控制理论(社会学)
弹道
人工神经网络
计算机科学
滑模控制
跟踪(教育)
控制工程
机械手
模式(计算机接口)
操纵器(设备)
模糊逻辑
机器人
控制(管理)
人工智能
工程类
非线性系统
物理
心理学
教育学
天文
量子力学
操作系统
作者
Quynh Nguyen Phuc Xuan,Cuong Nguyen Cong,Nghien Nguyen Ba
出处
期刊:Journal of Robotics and Control (JRC)
[Universitas Muhammadiyah Yogyakarta]
日期:2024-03-05
卷期号:5 (2): 490-499
标识
DOI:10.18196/jrc.v5i2.20722
摘要
This paper presents a control method for a two-link industrial robot manipulator system that uses Fuzzy Neural Networks (FNNs) based on Sliding Mode Control (SMC) to investigate joint position control for periodic motion and predefined trajectory tracking control. The proposed control scheme addresses the challenges of designing a suitable control system that can achieve the required approximation errors while ensuring the stability and robustness of the control system in the face of joint friction forces, parameter variations, and external disturbances. The control scheme uses four layers of FNNs to approximate nonlinear robot dynamics and remove chattering control efforts in the SMC system. The adaptive turning algorithms of network parameters are derived using a projection algorithm and the Lyapunov stability theorem. The proposed control scheme guarantees global stability and robustness of the control system, and position is proven. Simulation and experiment results from a two-link IRM in an electric power substation are presented in comparison to PID and AF control to demonstrate the superior tracking precision and robustness of the proposed intelligent control scheme.
科研通智能强力驱动
Strongly Powered by AbleSci AI