Dynamic Hierarchical Convolutional Attention Network for Recognizing Motor Imagery Intention

运动表象 心理学 认知心理学 计算机科学 神经科学 脑电图 脑-机接口
作者
Bin Lu,Fuwang Wang,Junxiang Chen,Guilin Wen,Changchun Hua,Rongrong Fu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:55 (5): 2202-2212
标识
DOI:10.1109/tcyb.2025.3549583
摘要

The neural activity patterns of localized brain regions are crucial for recognizing brain intentions. However, existing electroencephalogram (EEG) decoding models, especially those based on deep learning, predominantly focus on global spatial features, neglecting valuable local information, potentially leading to suboptimal performance. Therefore, this study proposed a dynamic hierarchical convolutional attention network (DH-CAN) that comprehensively learned discriminative information from both global and local spatial domains, as well as from time-frequency domains in EEG signals. Specifically, a multiscale convolutional block was designed to dynamically capture time-frequency information. The channels of EEG signals were mapped to different brain regions based on motor imagery neural activity patterns. The spatial features, both global and local, were then hierarchically extracted to fully exploit the discriminative information. Furthermore, regional connectivity was established using a graph attention network, incorporating it into the local spatial features. Particularly, this study shared network parameters between symmetrical brain regions to better capture asymmetrical motor imagery patterns. Finally, the learned multilevel features were integrated through a high-level fusion layer. Extensive experimental results on two datasets demonstrated that the proposed model performed excellently across multiple evaluation metrics, exceeding existing benchmark methods. These findings suggested that the proposed model offered a novel perspective for EEG decoding research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
睿0924发布了新的文献求助10
1秒前
冷傲小猫咪完成签到,获得积分10
1秒前
充电宝应助迅速的千风采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
文艺的真完成签到 ,获得积分10
3秒前
glasses完成签到 ,获得积分10
3秒前
taoliu发布了新的文献求助10
4秒前
wenlin发布了新的文献求助10
5秒前
6秒前
8秒前
8秒前
王武聪完成签到 ,获得积分10
8秒前
糕糕发布了新的文献求助10
8秒前
10秒前
传奇3应助弄香采纳,获得10
10秒前
11秒前
Jemezs完成签到,获得积分10
11秒前
小迷鹿发布了新的文献求助30
12秒前
12秒前
12秒前
星辰大海应助积极的老鼠采纳,获得10
13秒前
samal完成签到 ,获得积分10
14秒前
15秒前
wenlin完成签到,获得积分10
15秒前
15秒前
标致亦寒关注了科研通微信公众号
15秒前
16秒前
科研通AI6应助哈哈哈哈采纳,获得10
16秒前
凶狠的姚发布了新的文献求助10
18秒前
科研通AI6应助糕糕采纳,获得10
18秒前
19秒前
AryaZzz完成签到 ,获得积分10
20秒前
21秒前
Wdwpp完成签到 ,获得积分10
21秒前
小迷鹿完成签到,获得积分10
22秒前
还好完成签到,获得积分10
23秒前
NexusExplorer应助逊杰采纳,获得10
24秒前
cpy1004应助泡泡糖采纳,获得10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407145
求助须知:如何正确求助?哪些是违规求助? 4524806
关于积分的说明 14100192
捐赠科研通 4438630
什么是DOI,文献DOI怎么找? 2436417
邀请新用户注册赠送积分活动 1428409
关于科研通互助平台的介绍 1406443