亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prostate Cancer Risk Stratification and Scan Tailoring Using Deep Learning on Abbreviated Prostate MRI

前列腺癌 危险分层 医学 前列腺 磁共振成像 放射科 医学物理学 肿瘤科 癌症 内科学
作者
Patricia M. Johnson,Tarun Dutt,Luke Ginocchio,Amanpreet Singh Saimbhi,Lavanya Umapathy,Kai Tobias Block,Daniel K. Sodickson,Sumit Chopra,Angela Tong,Hersh Chandarana
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:62 (3): 858-866 被引量:5
标识
DOI:10.1002/jmri.29798
摘要

ABSTRACT Background MRI plays a critical role in prostate cancer (PCa) detection and management. Bi‐parametric MRI (bpMRI) offers a faster, contrast‐free alternative to multi‐parametric MRI (mpMRI). Routine use of mpMRI for all patients may not be necessary, and a tailored imaging approach (bpMRI or mpMRI) based on individual risk might optimize resource utilization. Purpose:To develop and evaluate a deep learning (DL) model for classifying clinically significant PCa (csPCa) using bpMRI and to assess its potential for optimizing MRI protocol selection by recommending the additional sequences of mpMRI only when beneficial. Study Type Retrospective and prospective. Population The DL model was trained and validated on 26,129 prostate MRI studies. A retrospective cohort of 151 patients (mean age 65 ± 8) with ground‐truth verification from biopsy, prostatectomy, or long‐term follow‐up, alongside a prospective cohort of 142 treatment‐naïve patients (mean age 65 ± 9) undergoing bpMRI, was evaluated. Field Strength/Sequence 3 T, Turbo‐spin echo T2‐weighted imaging (T2WI) and single shot EPI diffusion‐weighted imaging (DWI). Assessment The DL model, based on a 3D ResNet‐50 architecture, classified csPCa using PI‐RADS ≥ 3 and Gleason ≥ 7 as outcome measures. The model was evaluated on a prospective cohort labeled by consensus of three radiologists and a retrospective cohort with ground truth verification based on biopsy or long‐term follow‐up. Real‐time inference was tested on an automated MRI workflow, providing classification results directly at the scanner. Statistical Tests AUROC with 95% confidence intervals (CI) was used to evaluate model performance. Results In the prospective cohort, the model achieved an AUC of 0.83 (95% CI: 0.77–0.89) for PI‐RADS ≥ 3 classification, with 93% sensitivity and 54% specificity. In the retrospective cohort, the model achieved an AUC of 0.86 (95% CI: 0.80–0.91) for Gleason ≥ 7 classification, with 93% sensitivity and 62% specificity. Real‐time implementation demonstrated a processing latency of 14–16 s for protocol recommendations. Data Conclusion The proposed DL model identifies csPCa using bpMRI and integrates it into clinical workflows. Evidence Level 1. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
andrele发布了新的文献求助10
6秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
41秒前
44秒前
Criminology34应助科研通管家采纳,获得10
47秒前
47秒前
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
hanawang应助科研通管家采纳,获得10
47秒前
Criminology34应助科研通管家采纳,获得10
47秒前
CodeCraft应助科研通管家采纳,获得10
47秒前
Criminology34应助科研通管家采纳,获得10
47秒前
47秒前
52秒前
57秒前
馅饼完成签到,获得积分10
1分钟前
转转发布了新的文献求助10
1分钟前
科研通AI6.1应助转转采纳,获得50
1分钟前
1分钟前
小苏打真甜完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Demi_Ming完成签到,获得积分10
1分钟前
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
yyy发布了新的文献求助10
2分钟前
2分钟前
英俊的铭应助yyy采纳,获得10
2分钟前
无辜的黄豆完成签到 ,获得积分10
3分钟前
咻咻发布了新的文献求助10
3分钟前
龚文亮完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764216
求助须知:如何正确求助?哪些是违规求助? 5549135
关于积分的说明 15405999
捐赠科研通 4899537
什么是DOI,文献DOI怎么找? 2635744
邀请新用户注册赠送积分活动 1583892
关于科研通互助平台的介绍 1539034