Four-hour thunderstorm nowcasting using a deep diffusion model for satellite data

作者
Kuai Dai,Xutao Li,Junying Fang,Yunming Ye,Demin Yu,Hui Su,Di Xian,Danyu Qin,Jingsong Wang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (51): e2517520122-e2517520122 被引量:1
标识
DOI:10.1073/pnas.2517520122
摘要

Convection (thunderstorm) develops rapidly within hours and is highly destructive, posing a significant challenge for nowcasting and resulting in substantial losses to infrastructure and society. After the emergence of AI-based methods, convection nowcasting has experienced rapid advancements, with its performance surpassing that of physics-based numerical weather prediction and other conventional approaches. However, the lead time and coverage of it still leave much to be desired and hardly meet the needs of disaster emergency response. Here, we propose a deep diffusion model for satellite data (DDMS) to establish an AI-based convection nowcasting system. Specifically, DDMS employs diffusion processes to effectively simulate complicated spatiotemporal evolution patterns of convective clouds, achieving more accurate forecasts of convective growth and dissipation over longer lead times. Additionally, it combines geostationary satellite brightness temperature data and domain knowledge from meteorological experts, thereby achieving planetary-scale forecast coverage. During long-term tests and objective validation based on the FengYun-4A satellite, our system achieves effective convection nowcasting up to 4 h, with broad coverage (about 20,000,000 km 2 ), remarkable accuracy, and high resolution (15 min; 4 km). Its performance reaches a new height in convection nowcasting compared to the existing models. In terms of application, our system is highly transferable with the potential to collaborate with multiple satellites for global convection nowcasting. Furthermore, our results highlight the remarkable capabilities of diffusion models in convective clouds forecasting, as well as the significant value of geostationary satellite data when empowered by AI technologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bertha325发布了新的文献求助10
刚刚
bkagyin应助风语村采纳,获得10
1秒前
烟花应助yucj采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
俏皮的书白关注了科研通微信公众号
2秒前
冫氵完成签到 ,获得积分10
2秒前
嗯嗯哈哈发布了新的文献求助10
4秒前
Giroro_roro完成签到,获得积分10
5秒前
Renhaosong完成签到,获得积分10
5秒前
打打应助枕漱采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
不狗不吹发布了新的文献求助10
8秒前
ding应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
Xiaoxiao应助科研通管家采纳,获得10
9秒前
咕噜咕噜发布了新的文献求助10
9秒前
乐乐应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
帝国之花应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
gege发布了新的文献求助10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
小青椒应助科研通管家采纳,获得30
11秒前
ding应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
11秒前
Xiaoxiao应助科研通管家采纳,获得10
11秒前
CWNU_HAN应助科研通管家采纳,获得30
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
12秒前
焦糖栗子怪完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770918
求助须知:如何正确求助?哪些是违规求助? 5588554
关于积分的说明 15426008
捐赠科研通 4904290
什么是DOI,文献DOI怎么找? 2638685
邀请新用户注册赠送积分活动 1586521
关于科研通互助平台的介绍 1541645