清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial intelligence-based models for quantification of intra-pancreatic fat deposition and their clinical relevance: a systematic review of imaging studies

医学 人工智能 分割 相关性(法律) 置信区间 胰腺 基本事实 神经组阅片室 梅德林 胰腺炎 机器学习 放射科 计算机科学 内科学 神经学 精神科 政治学 法学
作者
Tej Joshi,John Virostko,Maxim S. Petrov
出处
期刊:European Radiology [Springer Nature]
标识
DOI:10.1007/s00330-025-11808-6
摘要

Abstract High intra-pancreatic fat deposition (IPFD) plays an important role in diseases of the pancreas. The intricate anatomy of the pancreas and the surrounding structures has historically made IPFD quantification a challenging measurement to make accurately on radiological images. To take on the challenge, automated IPFD quantification methods using artificial intelligence (AI) have recently been deployed. The aim was to benchmark the current knowledge on the use of AI-based models to measure IPFD automatedly. The search was conducted in the MEDLINE, Embase, Scopus, and IEEE Xplore databases. Studies were eligible if they used AI for both segmentation of the pancreas and quantification of IPFD. The ground truth was manual segmentation by radiologists. When possible, data were pooled statistically using a random-effects model. A total of 12 studies (10 cross-sectional and 2 longitudinal) encompassing more than 50 thousand people were included. Eight of the 12 studies used MRI, whereas four studies employed CT. U-Net model and nnU-Net model were the most frequently used AI-based models. The pooled Dice similarity coefficient of AI-based models in quantifying IPFD was 82.3% (95% confidence interval, 73.5 to 91.1%). The clinical application of AI-based models showed the relevance of high IPFD to acute pancreatitis, pancreatic cancer, and type 2 diabetes mellitus. Current AI-based models for IPFD quantification are suboptimal, as the dissimilarity between AI-based and manual quantification of IPFD is not negligible. Future advancements in fully automated measurements of IPFD will accelerate the accumulation of robust, large-scale evidence on the role of high IPFD in pancreatic diseases. Key Points Question What is the current evidence on the performance and clinical applicability of artificial intelligence-based models for automated quantification of intra-pancreatic fat deposition? Findings The nnU-Net model achieved the highest Dice similarity coefficient among MRI-based studies, whereas the nnTransfer model demonstrated the highest Dice similarity coefficient in CT-based studies. Clinical relevance Standardisation of reporting on artificial intelligence-based models for the quantification of intra-pancreatic fat deposition will be essential to enhancing the clinical applicability and reliability of artificial intelligence in imaging patients with diseases of the pancreas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
35秒前
科目三应助科研通管家采纳,获得10
35秒前
45秒前
博姐37完成签到 ,获得积分10
47秒前
1分钟前
小小虾完成签到 ,获得积分10
1分钟前
weiwei完成签到,获得积分10
1分钟前
爱思考的小笨笨完成签到,获得积分10
1分钟前
2分钟前
研友_nxw2xL完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
如歌完成签到,获得积分10
2分钟前
阳光的丹雪完成签到,获得积分10
2分钟前
Criminology34应助Lulu采纳,获得10
2分钟前
3分钟前
多乐多发布了新的文献求助10
3分钟前
情怀应助多乐多采纳,获得10
3分钟前
蝎子莱莱xth完成签到,获得积分10
4分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
4分钟前
woxinyouyou完成签到,获得积分0
4分钟前
crazy完成签到,获得积分10
4分钟前
Square完成签到,获得积分10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
h0jian09完成签到,获得积分10
4分钟前
lovelife完成签到,获得积分10
5分钟前
5分钟前
刘刘完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
魔幻的从丹完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
老石完成签到 ,获得积分10
6分钟前
Jessica应助hu采纳,获得10
6分钟前
7分钟前
7分钟前
雨jia完成签到,获得积分10
7分钟前
大个应助鹏哥爱科研采纳,获得10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664535
求助须知:如何正确求助?哪些是违规求助? 4864753
关于积分的说明 15107992
捐赠科研通 4823177
什么是DOI,文献DOI怎么找? 2582040
邀请新用户注册赠送积分活动 1536144
关于科研通互助平台的介绍 1494545