摘要
Two-dimensional (2D) van der Waals (vdW) magnetic materials have emerged as a frontier in condensed matter physics and materials science, offering unprecedented opportunities for next-generation spintronic technologies. This review examines the synthesis, properties, and transport phenomena of 2D magnetic materials, with particular emphasis on their integration into spintronic devices. A comprehensive historical overview of magnetic materials is provided, tracing the evolution of intrinsic ferromagnetism in the 2D limit, highlighting key materials such as Cr2Ge2Te6, Fe3GeTe2, and CrI3. Special attention is devoted to the fundamental magnetic properties—including magnetic anisotropy, Curie temperature, and spin polarization—that underpin their functional performance. Major synthesis strategies are evaluated, including chemical vapor deposition, micromechanical exfoliation, and molecular beam epitaxy, focusing on scalability, interface control, and material purity. Furthermore, hallmark transport phenomena are discussed, such as giant magnetoresistance, the quantum anomalous Hall effect, spin–orbit torque, and the role of exchange bias and skyrmions in vdW heterostructures. Throughout the review, current limitations, unresolved questions, and emerging research directions are identified that will accelerate the deployment of 2D magnetic materials in flexible, reconfigurable, and quantum spintronic systems. This work aims to guide ongoing experimental and theoretical efforts and articulate a vision for advancing the field toward device-level implementation.