YOLO-light-pruned: A lightweight model for monitoring maize seedling count and leaf age using near-ground and UAV RGB images

苗木 RGB颜色模型 遥感 环境科学 园艺 人工智能 地理 计算机科学 生物
作者
Tiantian Jiang,Liang Li,Zhen Zhang,Xun Yu,Yanqin Zhu,Liming Li,Ya-Dong Liu,Yali Bai,Ziqian Tang,Shuaibing Liu,Yan Zhang,Zheng Duan,Dameng Yin,Xiuliang Jin
出处
期刊:Artificial intelligence in agriculture [Elsevier]
卷期号:16 (1): 164-186
标识
DOI:10.1016/j.aiia.2025.10.002
摘要

Maize seedling count and leaf age are critical indicators of early growth status, essential for effective field management and breeding variety selection. Traditional field monitoring methods are time-consuming, labor-intensive, and prone to subjective errors. Recently, deep learning-based object detection models have gained attention in crop seedling counting. However, many of these models exhibit high computational complexity and implementation costs, making field deployment challenging. Moreover, maize leaf age monitoring in field environments is barely investigated. Therefore, this study proposes two lightweight models, YOLOv8n-Light-Pruned (YOLOv8n-LP) and YOLOv11n-Light-Pruned (YOLOv11n-LP), for monitoring maize seedling count and leaf age in field RGB images. Our proposed models are improved from YOLOv8n and YOLOv11n by incorporating the DAttention mechanism, an improved BiFPN, an EfficientHead, and layer-adaptive magnitude-based pruning. The improvement in model complexity and model efficiency was significant, with the number of parameters reduced by over 73 % and model efficiency upgraded by up to 42.9 % depending on the device computation power. High accuracy was achieved in seedling counting (YOLOv8n-LP/ YOLOv11n-LP: AP = 0.968/0.969, R2 = 0.91/0.94, rRMSE = 6.73 %/5.59 %), with significantly reduced model size (YOLOv8n-LP/ YOLOv11n-LP: parameters = 0.8 M/0.7 M, trained model size = 1.8 MB/1.7 MB). The robustness was validated across datasets with varying leaf ages (rRMSE = 4.07 % – 7.27 %), resolutions (rRMSE = 3.06 % – 6.28 %), seedling compositions (rRMSE = 1.09 % – 9.29 %), and planting densities (rRMSE = 3.38 % – 10.82 %). Finally, by integrating plant counting and leaf age estimation, the proposed models demonstrated high accuracy in leaf age detection using near-ground images (YOLOv8n-LP/ YOLOv11n-LP: rRMSE = 5.73 %/7.54 %) and UAV images (rRMSE = 9.24 %/14.44 %). The results demonstrate that the proposed models excel in detection accuracy, deployment efficiency, and adaptability to complex field environments, providing robust support for practical applications in precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
zzz发布了新的文献求助10
刚刚
刚刚
赘婿应助科研通管家采纳,获得30
刚刚
Maestro_S应助科研通管家采纳,获得10
刚刚
清风朗月完成签到,获得积分20
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
文静的冷安完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
Deng完成签到,获得积分10
1秒前
王梓磬发布了新的文献求助10
2秒前
2秒前
2秒前
fdpb发布了新的文献求助10
3秒前
3秒前
可可完成签到,获得积分20
3秒前
高院士发布了新的文献求助50
3秒前
脑洞疼应助Dante采纳,获得10
4秒前
安之若素发布了新的文献求助10
4秒前
十八鱼发布了新的文献求助10
4秒前
Criminology34应助小张采纳,获得10
5秒前
minnie发布了新的文献求助10
5秒前
金博发布了新的文献求助10
6秒前
6秒前
大模型应助123采纳,获得10
7秒前
ding应助Itsuki采纳,获得10
7秒前
魏新明发布了新的文献求助20
8秒前
8秒前
33完成签到,获得积分20
8秒前
阳光梦桃完成签到,获得积分10
8秒前
whg完成签到,获得积分10
8秒前
9秒前
思源应助快乐达不刘采纳,获得10
9秒前
hh发布了新的文献求助10
9秒前
别凡完成签到,获得积分10
9秒前
三百一十四完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5361763
求助须知:如何正确求助?哪些是违规求助? 4491873
关于积分的说明 13984270
捐赠科研通 4394835
什么是DOI,文献DOI怎么找? 2414190
邀请新用户注册赠送积分活动 1406961
关于科研通互助平台的介绍 1381610