LLM-driven Medical Report Generation via Communication-efficient Heterogeneous Federated Learning

计算机科学 人工智能
作者
Haoxuan Che,Haibo Jin,Zhijie Gu,Yi Lin,Cheng Jin,Hao Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tmi.2025.3591185
摘要

Large Language Models (LLMs) have demonstrated significant potential in Medical Report Generation (MRG), yet their development requires large amounts of medical image-report pairs, which are commonly scattered across multiple centers. Centralizing these data is exceptionally challenging due to privacy regulations, thereby impeding model development and broader adoption of LLM-driven MRG models. To address this challenge, we present FedMRG, the first framework that leverages Federated Learning (FL) to enable privacy-preserving, multi-center development of LLM-driven MRG models, specifically designed to overcome the critical challenge of communication-efficient LLM training under multi-modal data heterogeneity. To start with, our framework tackles the fundamental challenge of communication overhead in federated LLM tuning by employing low-rank factorization to efficiently decompose parameter updates, significantly reducing gradient transmission costs and making LLM-driven MRG feasible in bandwidth-constrained FL settings. Furthermore, we observed the dual heterogeneity in MRG under the FL scenario: varying image characteristics across medical centers, as well as diverse reporting styles and terminology preferences. To address the data heterogeneity, we further enhance FedMRG with (1) client-aware contrastive learning in the MRG encoder, coupled with diagnosis-driven prompts, which capture both globally generalizable and locally distinctive features while maintaining diagnostic accuracy; and (2) a dual-adapter mutual boosting mechanism in the MRG decoder that harmonizes generic and specialized adapters to address variations in reporting styles and terminology. Through extensive evaluation of our established FL-MRG benchmark, we demonstrate the generalizability and adaptability of FedMRG, underscoring its potential in harnessing multi-center data and generating clinically accurate reports while maintaining communication efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
聪明的寄灵完成签到,获得积分10
2秒前
隐形不凡完成签到,获得积分10
2秒前
3秒前
缥缈的背包完成签到,获得积分10
4秒前
anliluo发布了新的文献求助10
4秒前
Owen应助玛卡巴卡采纳,获得10
7秒前
乐观乐菱完成签到,获得积分10
8秒前
8秒前
蚂蚁完成签到,获得积分10
8秒前
LLM发布了新的文献求助10
8秒前
李英俊发布了新的文献求助10
8秒前
小付发布了新的文献求助50
10秒前
XIXIXI发布了新的文献求助10
11秒前
小二郎应助花城采纳,获得10
11秒前
12秒前
Lucas应助variant采纳,获得10
13秒前
明芬发布了新的文献求助10
14秒前
乐观乐菱发布了新的文献求助10
14秒前
14秒前
李英俊完成签到,获得积分10
15秒前
15秒前
zyz1132完成签到,获得积分10
18秒前
Akim应助负责戎采纳,获得10
21秒前
21秒前
自觉向秋发布了新的文献求助10
21秒前
gloval完成签到,获得积分10
21秒前
路人应助免疫小白采纳,获得200
21秒前
22秒前
23秒前
23秒前
搜集达人应助风语过采纳,获得10
24秒前
godgyw完成签到 ,获得积分10
24秒前
手拿把掐吴完成签到 ,获得积分10
26秒前
26秒前
yy发布了新的文献求助10
26秒前
李健应助轻松向彤采纳,获得10
27秒前
zyz1132发布了新的文献求助10
28秒前
花城发布了新的文献求助10
28秒前
马小尚完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284540
求助须知:如何正确求助?哪些是违规求助? 4437980
关于积分的说明 13815642
捐赠科研通 4319001
什么是DOI,文献DOI怎么找? 2370833
邀请新用户注册赠送积分活动 1366166
关于科研通互助平台的介绍 1329639