Neural Net-Enhanced Competitive Swarm Optimizer for Large-Scale Multiobjective Optimization

群体行为 计算机科学 人工神经网络 粒子群优化 成对比较 进化算法 数学优化 比例(比率) 竞赛(生物学) 人工智能 元启发式 机器学习 数学 生态学 物理 生物 量子力学
作者
Lingjie Li,Yongfeng Li,Qiuzhen Lin,Songbai Liu,Junwei Zhou,Zhong Ming,Carlos A. Coello Coello
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (6): 3502-3515 被引量:24
标识
DOI:10.1109/tcyb.2023.3287596
摘要

The competitive swarm optimizer (CSO) classifies swarm particles into loser and winner particles and then uses the winner particles to efficiently guide the search of the loser particles. This approach has very promising performance in solving large-scale multiobjective optimization problems (LMOPs). However, most studies of CSOs ignore the evolution of the winner particles, although their quality is very important for the final optimization performance. Aiming to fill this research gap, this article proposes a new neural net-enhanced CSO for solving LMOPs, called NN-CSO, which not only guides the loser particles via the original CSO strategy, but also applies our trained neural network (NN) model to evolve winner particles. First, the swarm particles are classified into winner and loser particles by the pairwise competition. Then, the loser particles and winner particles are, respectively, treated as the input and desired output to train the NN model, which tries to learn promising evolutionary dynamics by driving the loser particles toward the winners. Finally, when model training is complete, the winner particles are evolved by the well-trained NN model, while the loser particles are still guided by the winner particles to maintain the search pattern of CSOs. To evaluate the performance of our designed NN-CSO, several LMOPs with up to ten objectives and 1000 decision variables are adopted, and the experimental results show that our designed NN model can significantly improve the performance of CSOs and shows some advantages over several state-of-the-art large-scale multiobjective evolutionary algorithms as well as over model-based evolutionary algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮完成签到 ,获得积分10
刚刚
夜色下啖一口茶完成签到,获得积分10
刚刚
哈哈发布了新的文献求助30
1秒前
Derik完成签到,获得积分10
1秒前
王羊补牢完成签到,获得积分10
1秒前
Jally发布了新的文献求助10
2秒前
humeme完成签到 ,获得积分10
2秒前
丘比特应助罗博超采纳,获得10
2秒前
2秒前
时运完成签到,获得积分10
2秒前
xyz发布了新的文献求助10
3秒前
xrl完成签到 ,获得积分10
3秒前
无心的可仁完成签到,获得积分10
3秒前
drift完成签到,获得积分10
4秒前
小潘同学完成签到,获得积分10
4秒前
KasenDen发布了新的文献求助10
4秒前
4秒前
善学以致用应助细心千风采纳,获得10
4秒前
4秒前
老盖完成签到,获得积分20
4秒前
5秒前
医学机长完成签到,获得积分10
5秒前
姜院士完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
姣姣完成签到,获得积分10
6秒前
浮游应助无心的青槐采纳,获得10
6秒前
我爱学习发布了新的文献求助10
6秒前
6秒前
Sylvia0528完成签到,获得积分10
7秒前
7秒前
快乐的紫菜完成签到,获得积分10
8秒前
Owen应助12345采纳,获得10
8秒前
JamesPei应助半梦采纳,获得10
8秒前
wwgn发布了新的文献求助10
8秒前
弥漫的橘完成签到,获得积分10
8秒前
8秒前
8秒前
太白完成签到,获得积分10
9秒前
9秒前
暴躁的嘉懿完成签到,获得积分10
9秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
The Tangram Book: The Story of the Chinese Puzzle With over 2000 Puzzles to Solve 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450840
求助须知:如何正确求助?哪些是违规求助? 4558706
关于积分的说明 14269051
捐赠科研通 4482350
什么是DOI,文献DOI怎么找? 2455156
邀请新用户注册赠送积分活动 1445882
关于科研通互助平台的介绍 1422044