Design of Low-Stress robust silicon and Silicon-Carbide anode with high areal capacity and high energy density for Next-Generation Lithium-Ion batteries

阳极 材料科学 X射线光电子能谱 阴极 锂(药物) 化学工程 碳化硅 复合材料 纳米技术 光电子学 电极 电气工程 化学 医学 物理化学 工程类 内分泌学
作者
Manoj Gautam,Govind Kumar Mishra,Mohammad Furquan,K. Bhawana,Dhruv Kumar,Sagar Mitra
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:472: 144916-144916 被引量:25
标识
DOI:10.1016/j.cej.2023.144916
摘要

Utilization of biomass-converted products in the energy industry is a pathway to sustain the demand of high energy lithium cells, and silicon anode could be a solution before the lithium metal. The high percentage of silicon (>10 wt%) in the anode for capacity gain can’t prevent crack generation during cycling and results in capacity fading and cell failure. Here, we present a unique anode structure like an in-situ nano-layer of carbon-coated silicon–silicon carbide (Si-SiC@C) from black rice husk ash (BRHA)-biomass. A specific proportion of the “SiC” phase in Si-SiC@C plays a crucial role in the formation of a stable interface, passivation of the Si surface, and suppression of Si cracking, resulting in improved battery cycling performance. Furthermore, the distribution of relaxation times (DRT) experiment was carried out in MATLAB software to more understand the interface mechanism. Nano-indentation and Von-mises stress generation method was used to analyze the mechanical properties of samples. The ‘Si’ and ‘SiC’ phases were distinguished by X-ray Diffraction (XRD) and are thoroughly analyzed via the advanced characterization tools (i.e., FETEM, c-AFM, XPS, etc.). The optimized Si-SiC@C composition showed excellent cyclic stability up to 700 cycles with an areal capacity of ∼2.3 mAh cm−2 at a rate of 0.2 A g−1 vs. Li/Li+. Moreover, a pouch cell is fabricated with the Si-SiC@C (i.e., ∼3.8 mg cm−2) as anode and NMC811 as cathode (∼11.5 mg cm−2). The developed 300 mAh pouch cell performed excellently (>85 % capacity retention) over 200 cycles. In light of easy and energy-efficient synthesis, robustness, and cyclic stability, the specially designed Si-SiC@C from BRHA can be a promising choice as the next-generation anode material for rechargeable battery applications, particularly for lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻半仙发布了新的文献求助10
8秒前
8秒前
V_I_G完成签到 ,获得积分10
9秒前
小叶子发布了新的文献求助10
13秒前
FrozNineTivus完成签到,获得积分10
17秒前
vampirell完成签到,获得积分0
21秒前
张慧杰完成签到,获得积分10
24秒前
25秒前
ggg完成签到,获得积分10
30秒前
共享精神应助魔幻半仙采纳,获得10
31秒前
Jasper应助Galaxee采纳,获得10
33秒前
蔡以静完成签到,获得积分10
34秒前
zhaolee完成签到 ,获得积分10
39秒前
40秒前
40秒前
40秒前
克林完成签到,获得积分10
40秒前
77发布了新的文献求助10
43秒前
44秒前
细腻问柳发布了新的文献求助10
45秒前
Galaxee发布了新的文献求助10
46秒前
Francisco应助77采纳,获得10
48秒前
天真无招完成签到,获得积分10
48秒前
49秒前
削皮柚子完成签到 ,获得积分10
50秒前
NexusExplorer应助贰什柒采纳,获得10
52秒前
55秒前
G1997完成签到 ,获得积分10
58秒前
59秒前
1分钟前
1分钟前
阿索发布了新的文献求助10
1分钟前
zjhzslq完成签到,获得积分10
1分钟前
科研通AI2S应助Siren采纳,获得10
1分钟前
科研通AI2S应助ccalvintan采纳,获得10
1分钟前
鱼不存在发布了新的文献求助30
1分钟前
传奇3应助氟锑酸采纳,获得10
1分钟前
危机的幻梦完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777104
求助须知:如何正确求助?哪些是违规求助? 3322512
关于积分的说明 10210474
捐赠科研通 3037840
什么是DOI,文献DOI怎么找? 1666936
邀请新用户注册赠送积分活动 797849
科研通“疑难数据库(出版商)”最低求助积分说明 758044