Integrating self-supervised denoising in inversion-based seismic deblending

计算机科学 降噪 欠定系统 正规化(语言学) 噪音(视频) 算法 反演(地质) 信号处理 嵌入 人工智能 数据挖掘 图像(数学) 地震学 地质学 电信 构造学 雷达
作者
Nick Luiken,Matteo Ravasi,Claire Birnie
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): WA39-WA51 被引量:8
标识
DOI:10.1190/geo2023-0131.1
摘要

To limit the time, cost, and environmental impact associated with the acquisition of seismic data in recent decades, considerable effort has been put into so-called simultaneous shooting acquisitions, where seismic sources are fired at short time intervals between each other. As a consequence, waves originating from consecutive shots are entangled within the seismic recordings, yielding so-called blended data. For processing and imaging purposes, the data generated by each individual shot must be retrieved. This process, called deblending, is achieved by solving an inverse problem that is heavily underdetermined. Conventional approaches rely on the action of the adjoint of the blending operator that renders the blending noise into burst-like noise while preserving the signal of interest. Compressed sensing type regularization is then applied, where sparsity in some domain is assumed for the signal of interest. The domain of choice generally depends on the acquisition geometry and the separability between the signal and noise within the chosen domain. In this work, we introduce a new concept that consists of embedding a self-supervised denoising network into the plug-and-play (PnP) framework. A novel network is introduced whose design extends an existing blind-spot network architecture for partially coherent noise (i.e., correlated in time). The network is then trained directly on the noisy input data at each step of the PnP algorithm. By leveraging the underlying physics of the problem and the great denoising capabilities of our blind-spot network, our algorithm is shown to outperform standard industry methods while being comparable in terms of computational cost. Moreover, being independent of the acquisition geometry, our method can be easily applied to marine and land data without any significant modification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
没烦恼完成签到,获得积分10
4秒前
烟花应助Mzhao采纳,获得10
4秒前
5秒前
科研通AI5应助Nereus采纳,获得10
5秒前
科研通AI5应助qianyuan采纳,获得10
6秒前
秘密完成签到,获得积分10
6秒前
6秒前
yiding完成签到 ,获得积分10
7秒前
8秒前
8秒前
kingripple发布了新的文献求助10
10秒前
淡淡的筝发布了新的文献求助10
11秒前
wocala完成签到 ,获得积分10
11秒前
12秒前
CCC完成签到,获得积分10
12秒前
12秒前
cxy发布了新的文献求助10
13秒前
啊啊完成签到,获得积分20
14秒前
15秒前
16秒前
wang0626完成签到 ,获得积分10
16秒前
GB发布了新的文献求助10
17秒前
000发布了新的文献求助10
17秒前
17秒前
17秒前
LaTeXer给怡然凌柏的求助进行了留言
19秒前
牙牙发布了新的文献求助10
19秒前
顺利的觅云完成签到,获得积分10
19秒前
小二郎应助333水采纳,获得10
19秒前
qianyuan发布了新的文献求助10
21秒前
可爱的函函应助科研兄采纳,获得10
21秒前
21秒前
RAY完成签到,获得积分10
22秒前
聪明白羊完成签到,获得积分10
22秒前
Orange应助尊敬的凝丹采纳,获得10
23秒前
小马甲应助无限妙梦采纳,获得10
23秒前
S1008发布了新的文献求助10
24秒前
标致冰海完成签到 ,获得积分10
25秒前
啊啊发布了新的文献求助20
26秒前
无私乐驹发布了新的文献求助10
27秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805315
求助须知:如何正确求助?哪些是违规求助? 3350274
关于积分的说明 10348210
捐赠科研通 3066165
什么是DOI,文献DOI怎么找? 1683589
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214