材料科学
表面粗糙度
可加工性
形状记忆合金
机械加工
电火花加工
表面光洁度
冶金
合金
表面完整性
复合材料
三元运算
电极
计算机科学
程序设计语言
化学
物理化学
作者
N. Praveen,N.G. Siddesh Kumar,C. Durga Prasad,Jayant Giri,Ibrahim Albaijan,Mallik Uthamballi Shivanna,T. Sathish
标识
DOI:10.1016/j.jmrt.2024.03.122
摘要
Shape memory and super elasticity are two outstanding properties of Cu–Al–Mn SMAs together with additional copper-based shape memory alloys that make them superior to NiTi alloys. It's quite hard to machine Cu–Al–Mn SMA. The machinability properties of Cu–Al–Mn SMAs during Wire Electrical Discharge Machining (WEDM) were experimentally investigated using molybdenum wire as the electrode material. Material Removal Rate (MRR) and Surface Roughness (SR) are two machining qualities that are studied in relation to the combinational values of pulse time (Ton), pause time (Toff), and peak current (Ip), which are selected as the changeable input process factors. From the experimental investigation, it was found that both MRR and Ra values were increased with an increase in pulse on time(Ton), pulse off time(Toff), and peak current (IP)values. Because the wire electrode contains maximum current under these conditions, it is easy to remove more material at the tool and work material interface, resulting in moderate surface finish. Surface quality was higher on samples machined at low energy input than it was on samples machined at high energy input. This SEM micrograph clearly shows that a lower pulse on time produces a superior surface quality.SEM images and the analysis of the machined surface morphology on the surface of the CAM7 alloy clearly showed that the machined surface of the alloy had a lower surface roughness value at a lower Ip-2A and was associated with a higher surface roughness value at a higher Ip-6A, as well as a lot of uncleared debris and blow holes.
科研通智能强力驱动
Strongly Powered by AbleSci AI