FlashGNN: An In-SSD Accelerator for GNN Training

计算机科学 培训(气象学) 物理 气象学
作者
Fuping Niu,Jianhui Yue,Jiangqiu Shen,Xiaofei Liao,Hai Jin
标识
DOI:10.1109/hpca57654.2024.00035
摘要

Recently, Graph Neural Networks (GNNs) have emerged as powerful tools for data analysis, surpassing traditional algorithms in various applications. However, the growing size of real-world datasets has outpaced the capabilities of centralized CPU or G PU - based systems. To address this challenge, numerous distributed systems have been proposed. However, these systems suffer from low hardware utilization due to slow network data exchange. While SSDs provide a promising alternative with large capacity and improved access latency, SSD-based G NN training on a single computer is bottlenecked by slow PCIe bus data transfer. This bottleneck leads to low CPU and G PU utilization, as confirmed by our experiments. Moreover, the design of in-SSD GNN training is hindered by slow access to flash memory. FlashGNN is a proposed solution that overcomes the PCIe bottleneck, fully utilizes I/O parallelism in flash chips, and maximizes data reuse from fetched flash memory chunks for efficient GNN training. We achieve this by designing the SSD firmware to coordinate data movements and hardware unit access. To address design challenges arising from slow flash memory and limited resources, we propose a novel node-wise GNN training method, an efficient scheduling algorithm for flash requests, and a high-performance subgraph generation method. Experimental results demonstrate that FlashGNN outperforms Ginex, a state-of-the-art SSD-based GNN training system, with a speed-up ratio ranging from 4.89× to 11.83 × and achieves energy savings of 57.14 × to 192.66 × for four typical real-world graph datasets. Additionally, FlashGNN is up to 23.17 × more efficient than the enhanced state-of-the-art in-storage accelerator, SmartSAGE+.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美世界应助nancy吴采纳,获得10
1秒前
子爵木完成签到 ,获得积分10
2秒前
硕shuo发布了新的文献求助10
3秒前
小龙发布了新的文献求助10
4秒前
4秒前
rere发布了新的文献求助10
5秒前
bkagyin应助meimei采纳,获得10
5秒前
小荷完成签到,获得积分10
7秒前
8秒前
激情的乌龟完成签到,获得积分10
8秒前
9秒前
10秒前
11秒前
友好凡霜发布了新的文献求助30
12秒前
钱儿发布了新的文献求助10
12秒前
12秒前
彭于晏应助key采纳,获得10
13秒前
Nolan完成签到,获得积分10
14秒前
nancy吴发布了新的文献求助10
14秒前
16秒前
meimei发布了新的文献求助10
17秒前
llxie发布了新的文献求助10
17秒前
meng发布了新的文献求助10
20秒前
南昌黑人完成签到,获得积分10
21秒前
21秒前
淡然的芷荷完成签到 ,获得积分10
22秒前
23秒前
23秒前
yxdjzwx完成签到,获得积分10
25秒前
26秒前
26秒前
27秒前
板凳发布了新的文献求助30
27秒前
28秒前
三米之内发布了新的文献求助10
31秒前
LeiZha完成签到,获得积分10
31秒前
key发布了新的文献求助10
31秒前
隐形的妙松完成签到,获得积分10
32秒前
祝好发布了新的文献求助10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776730
求助须知:如何正确求助?哪些是违规求助? 3322167
关于积分的说明 10208975
捐赠科研通 3037401
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797622
科研通“疑难数据库(出版商)”最低求助积分说明 757921