The influence of the heat generation during deformation on the mechanical properties and microstructure of the selected TWIP steels

Twip公司 材料科学 冶金 成形性 微观结构 变形(气象学) 可塑性 应变率 应变硬化指数 加工硬化 晶体孪晶 复合材料
作者
Magdalena Jabłońska,Katarzyna Jasiak,Karolina Kowalczyk,Mateusz Skwarski,Kinga Rodak,Z. Gronostajski
出处
期刊:International Journal of Material Forming [Springer Nature]
卷期号:16 (3) 被引量:19
标识
DOI:10.1007/s12289-023-01753-4
摘要

Abstract The TWIP (Twinning Induced Plasticity) steels are one of the most promising materials in reducing the weight of vehicles. Despite a lot of research on TWIP steel, there are some issues that are not explained enough. Due to the future use of TWIP steel and the manufacturing of the final part by metal forming, three issues still need to be clarified. The first one, which is the most important, is the increase of the temperature due to the conversion of the deformation work into heat. TWIP steel has a high limit strain, strength and lower conductivity than conventional steel, therefore the heat generation of TWIP steel is greater than for other materials. The second and third issues are combined. They concern the influence of V microadditions on the stress–strain curves, the strain hardening coefficient n and the strain rate sensitivity coefficient m under cold deformation conditions. These properties determine the cold formability of TWIP steels. In the research, two TWIP steels were used with and without V microadditions (MnAl and MnAl-V steel). The special methodology using strain and temperature measurement systems as well as light and scanning electron microscopy (SEM) were applied. Research shows a significant increase of the temperature in the material due to high plastic deformations as well as a high level of yield stress. In the neck area, for the highest strain rate of 0,1 s -1, at the moment of rupture, the temperature reaches more than 200 °C. The difference between the average temperature in the rupture area and the maximum temperature is equal to 100° C. Its high increase can lead e.g. to changes in the deformation mechanism from twinning to dislocation gliding, which is also connected with a worsened workability, and thus also energy consumption of the bodywork elements. MnAl-V steel has better or similar ductility for the deep drawing in comparison to MnAl steel at low strain rates for almost isothermal conditions (constant temperature during deformation). However the MnAl steel has better ductility for the larger strain rates over 0.1 s −1 then there is large heat concentration in a very narrow area for MnAl-V steel. The obtained results are very important from an application point of view. The strain rate sensitivity coefficient m of the steel MnAl has very low, and even negative, values, which can make the production of complicated drawpieces difficult. Higher values of the strain rate sensitivity coefficient are exhibited by steel MnAl-V, i.e. at the level of 0,05, which is almost constant in the whole range of the obtained deformations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿斯披粼完成签到,获得积分10
2秒前
小马甲应助标致语蝶采纳,获得10
2秒前
Jasper应助琪琪乐乐采纳,获得10
3秒前
3秒前
4秒前
wanci应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
wanci应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
suliuyin应助科研通管家采纳,获得10
4秒前
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
NattyPoe应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
NattyPoe应助科研通管家采纳,获得10
4秒前
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
suliuyin应助科研通管家采纳,获得10
4秒前
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
suliuyin应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
JamesPei应助lmr采纳,获得10
4秒前
浪子应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
KUIWU发布了新的文献求助10
5秒前
5秒前
5秒前
浪子应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760897
求助须知:如何正确求助?哪些是违规求助? 5526527
关于积分的说明 15398531
捐赠科研通 4897535
什么是DOI,文献DOI怎么找? 2634236
邀请新用户注册赠送积分活动 1582341
关于科研通互助平台的介绍 1537691