清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Trustworthy Data and AI Environments for Clinical Prediction: Application to Crisis-Risk in People With Depression

随机森林 人工智能 计算机科学 机器学习 梯度升压 萧条(经济学) 条件随机场 心理健康 F1得分 非结构化数据 特征(语言学) 大数据 自然语言处理 数据挖掘 医学 精神科 宏观经济学 经济 哲学 语言学
作者
Yamiko Joseph Msosa,Arturas Grauslys,Yifan Zhou,Tao Wang,Iain Buchan,Paul Langan,Steven C. Foster,Michael Walker,Michael Pearson,Amos Folarin,Angus Roberts,Simon Maskell,Richard Dobson,Cecil Kullu,Dennis Kehoe
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5588-5598 被引量:19
标识
DOI:10.1109/jbhi.2023.3312011
摘要

Depression is a common mental health condition that often occurs in association with other chronic illnesses, and varies considerably in severity. Electronic Health Records (EHRs) contain rich information about a patient's medical history and can be used to train, test and maintain predictive models to support and improve patient care. This work evaluated the feasibility of implementing an environment for predicting mental health crisis among people living with depression based on both structured and unstructured EHRs. A large EHR from a mental health provider, Mersey Care, was pseudonymised and ingested into the Natural Language Processing (NLP) platform CogStack, allowing text content in binary clinical notes to be extracted. All unstructured clinical notes and summaries were semantically annotated by MedCAT and BioYODIE NLP services. Cases of crisis in patients with depression were then identified. Random forest models, gradient boosting trees, and Long Short-Term Memory (LSTM) networks, with varying feature arrangement, were trained to predict the occurrence of crisis. The results showed that all the prediction models can use a combination of structured and unstructured EHR information to predict crisis in patients with depression with good and useful accuracy. The LSTM network that was trained on a modified dataset with only 1000 most-important features from the random forest model with temporality showed the best performance with a mean AUC of 0.901 and a standard deviation of 0.006 using a training dataset and a mean AUC of 0.810 and 0.01 using a hold-out test dataset. Comparing the results from the technical evaluation with the views of psychiatrists shows that there are now opportunities to refine and integrate such prediction models into pragmatic point-of-care clinical decision support tools for supporting mental healthcare delivery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
shhoing应助科研通管家采纳,获得10
1秒前
1秒前
0911wxt完成签到,获得积分10
7秒前
alter_mu完成签到,获得积分10
29秒前
内向的雅山完成签到,获得积分10
31秒前
包容问雁发布了新的文献求助100
1分钟前
1分钟前
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
在水一方应助科研通管家采纳,获得10
2分钟前
包容问雁完成签到,获得积分10
2分钟前
包容问雁发布了新的文献求助100
2分钟前
trophozoite完成签到 ,获得积分10
2分钟前
xrang完成签到 ,获得积分10
2分钟前
2分钟前
ph完成签到 ,获得积分10
3分钟前
乾坤侠客LW完成签到,获得积分10
3分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
纯真的晴儿完成签到 ,获得积分10
4分钟前
uss完成签到,获得积分10
5分钟前
Rebeccaiscute完成签到 ,获得积分10
5分钟前
5分钟前
杰帅发布了新的文献求助10
5分钟前
充电宝应助杰帅采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
6分钟前
欢喜思山关注了科研通微信公众号
6分钟前
6分钟前
6分钟前
欢喜思山发布了新的文献求助10
6分钟前
感动初蓝完成签到 ,获得积分10
6分钟前
Li关闭了Li文献求助
6分钟前
简单完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI6应助Li采纳,获得10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549395
求助须知:如何正确求助?哪些是违规求助? 4634639
关于积分的说明 14634958
捐赠科研通 4576176
什么是DOI,文献DOI怎么找? 2509549
邀请新用户注册赠送积分活动 1485387
关于科研通互助平台的介绍 1456627