Predicting the effects of mutations on protein solubility using graph convolution network and protein language model representation

溶解度 水准点(测量) 计算机科学 卷积神经网络 蛋白质测序 生物信息学 图形 蛋白质结构预测 蛋白质结构 生物系统 计算生物学 人工智能 化学 肽序列 算法 基因 生物化学 生物 理论计算机科学 有机化学 地理 大地测量学
作者
Jing Wang,Sheng Chen,Qianmu Yuan,Jianwen Chen,Danping Li,Lei Wang,Yuedong Yang
出处
期刊:Journal of Computational Chemistry [Wiley]
卷期号:45 (8): 436-445 被引量:8
标识
DOI:10.1002/jcc.27249
摘要

Abstract Solubility is one of the most important properties of protein. Protein solubility can be greatly changed by single amino acid mutations and the reduced protein solubility could lead to diseases. Since experimental methods to determine solubility are time‐consuming and expensive, in‐silico methods have been developed to predict the protein solubility changes caused by mutations mostly through protein evolution information. However, these methods are slow since it takes long time to obtain evolution information through multiple sequence alignment. In addition, these methods are of low performance because they do not fully utilize protein 3D structures due to a lack of experimental structures for most proteins. Here, we proposed a sequence‐based method DeepMutSol to predict solubility change from residual mutations based on the Graph Convolutional Neural Network (GCN), where the protein graph was initiated according to predicted protein structure from Alphafold2, and the nodes (residues) were represented by protein language embeddings. To circumvent the small data of solubility changes, we further pretrained the model over absolute protein solubility. DeepMutSol was shown to outperform state‐of‐the‐art methods in benchmark tests. In addition, we applied the method to clinically relevant genes from the ClinVar database and the predicted solubility changes were shown able to separate pathogenic mutations. All of the data sets and the source code are available at https://github.com/biomed-AI/DeepMutSol .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
求助人完成签到 ,获得积分10
1秒前
2秒前
orixero应助STTY采纳,获得10
2秒前
美好斓发布了新的文献求助30
2秒前
3秒前
3秒前
5秒前
5秒前
6秒前
科研通AI5应助可靠的中心采纳,获得10
6秒前
树树关注了科研通微信公众号
6秒前
哇咔咔发布了新的文献求助10
7秒前
7秒前
7秒前
薄荷完成签到 ,获得积分10
8秒前
likey发布了新的文献求助10
8秒前
科研通AI5应助迅速的岂愈采纳,获得20
9秒前
9秒前
暴躁的阁完成签到,获得积分10
10秒前
10秒前
完美世界应助淡淡的凝冬采纳,获得10
10秒前
ddrose发布了新的文献求助10
11秒前
欣喜柚子完成签到 ,获得积分10
11秒前
11秒前
高越发布了新的文献求助10
12秒前
100完成签到,获得积分10
12秒前
13秒前
Pen_nie发布了新的文献求助10
14秒前
不如实干兴邦完成签到,获得积分10
15秒前
852应助勤恳擎宇采纳,获得10
17秒前
zzz完成签到,获得积分10
18秒前
19秒前
FashionBoy应助发发采纳,获得10
19秒前
口口完成签到 ,获得积分10
19秒前
20秒前
22秒前
危机的盼晴完成签到,获得积分10
22秒前
22秒前
Xiaoxiao应助ddrose采纳,获得10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783657
求助须知:如何正确求助?哪些是违规求助? 3328839
关于积分的说明 10238741
捐赠科研通 3044202
什么是DOI,文献DOI怎么找? 1670861
邀请新用户注册赠送积分活动 799939
科研通“疑难数据库(出版商)”最低求助积分说明 759171