Contextual Learning in Fourier Complex Field for VHR Remote Sensing Images

符号 像素 算法 计算机科学 人工智能 数学 算术
作者
Yan Zhang,Xiyuan Gao,Qingyan Duan,Jiaxu Leng,Xiao Pu,Xinbo Gao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:4
标识
DOI:10.1109/tnnls.2023.3319363
摘要

Very high-resolution (VHR) remote sensing (RS) image classification is the fundamental task for RS image analysis and understanding. Recently, Transformer-based models demonstrated outstanding potential for learning high-order contextual relationships from natural images with general resolution ( ≈ 224 × 224 pixels) and achieved remarkable results on general image classification tasks. However, the complexity of the naive Transformer grows quadratically with the increase in image size, which prevents Transformer-based models from VHR RS image ( ≥ 500 × 500 pixels) classification and other computationally expensive downstream tasks. To this end, we propose to decompose the expensive self-attention (SA) into real and imaginary parts via discrete Fourier transform (DFT) and, therefore, propose an efficient complex SA (CSA) mechanism. Benefiting from the conjugated symmetric property of DFT, CSA is capable to model the high-order contextual information with less than half computations of naive SA. To overcome the gradient explosion in Fourier complex field, we replace the Softmax function with the carefully designed Logmax function to normalize the attention map of CSA and stabilize the gradient propagation. By stacking various layers of CSA blocks, we propose the Fourier complex Transformer (FCT) model to learn global contextual information from VHR aerial images following the hierarchical manners. Universal experiments conducted on commonly used RS classification datasets demonstrate the effectiveness and efficiency of FCT, especially on VHR RS images. The source code of FCT will be available at https://github.com/Gao-xiyuan/FCT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨天完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
缓慢雅青发布了新的文献求助10
1秒前
2秒前
ang发布了新的文献求助10
2秒前
Yuki完成签到,获得积分10
2秒前
3秒前
jin晨发布了新的文献求助10
3秒前
3秒前
x1完成签到,获得积分10
3秒前
幽默人生完成签到 ,获得积分10
3秒前
4秒前
xiaoxiao完成签到 ,获得积分10
4秒前
4秒前
传奇3应助星残月影采纳,获得10
5秒前
天琪发布了新的文献求助10
5秒前
双儿发布了新的文献求助10
5秒前
海聪天宇发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
秀丽的大门完成签到,获得积分20
7秒前
wanci应助Iridesent0v0采纳,获得10
8秒前
8秒前
清河剑客完成签到,获得积分10
9秒前
9秒前
Ava应助liaoyu采纳,获得10
9秒前
iidodo发布了新的文献求助10
9秒前
10秒前
zzz完成签到 ,获得积分10
10秒前
阴阳怪气发布了新的文献求助10
10秒前
10秒前
映城发布了新的文献求助10
10秒前
斯文无敌完成签到,获得积分10
10秒前
研友_ZMH发布了新的文献求助10
11秒前
11秒前
11秒前
梨子完成签到,获得积分10
11秒前
核动力驴应助ang采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5654815
求助须知:如何正确求助?哪些是违规求助? 4795608
关于积分的说明 15070611
捐赠科研通 4813367
什么是DOI,文献DOI怎么找? 2575101
邀请新用户注册赠送积分活动 1530574
关于科研通互助平台的介绍 1489178