清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Remote Parkinson's disease severity prediction based on causal game feature selection

稳健性(进化) 特征选择 计算机科学 人工智能 随机森林 机器学习 数据挖掘 夏普里值 数学 博弈论 生物化学 化学 数理经济学 基因
作者
Zaifa Xue,Huibin Lu,Tao Zhang,Xiaonan Guo,Le Gao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:241: 122690-122690 被引量:3
标识
DOI:10.1016/j.eswa.2023.122690
摘要

Telemonitoring of Parkinson's disease has important implications for early diagnosis and treatment of patients. Most of the existing feature selection methods for remote prediction of PD severity are based on correlation and rarely consider causality, thus compromising the robustness of the model. Therefore, a causal game-based feature selection (CGFS) model is proposed for remote PD symptom severity assessment. Firstly, to address the challenge of small data size, the similar patient transfer strategy is designed to find data from source domain patients with conditions similar to those of the target patient. Secondly, the undirected equivalent greedy search method is employed to construct the causal graph between features and PD severity scores, and the robustness of the model is improved by selecting causal features. Then, to enhance the prediction accuracy, this paper utilizes the cooperative game approach Shapley value to evaluate the contribution of neighborhood nodes of the target value, and selects the features with causality and high contribution to form the final feature subset. Finally, the subset is input into the random forest to further enhance robustness and performance of the model. Experiments on Parkinson’s telemonitoring dataset and the tapping dataset with different biomarkers show that the robustness of the feature subset selected by the CGFS model, and the prediction performance is better than advanced models compared. Therefore, the validity and universality of the CGFS method is demonstrated in remote PD severity prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hongt05完成签到 ,获得积分10
14秒前
优秀的dd完成签到 ,获得积分10
27秒前
念念完成签到,获得积分10
1分钟前
Shining_Wu完成签到,获得积分10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
芝麻汤圆完成签到,获得积分10
2分钟前
自然之水完成签到,获得积分10
2分钟前
LaTeXer应助fdj3121采纳,获得30
2分钟前
maodeshu完成签到,获得积分10
2分钟前
fdj3121完成签到,获得积分10
2分钟前
赘婿应助maodeshu采纳,获得10
2分钟前
earthai完成签到,获得积分10
2分钟前
俭朴蜜蜂完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
zhubin完成签到 ,获得积分10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
juan完成签到 ,获得积分10
4分钟前
4分钟前
maodeshu发布了新的文献求助10
4分钟前
xiaxiao完成签到,获得积分0
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得20
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
huangzsdy完成签到,获得积分10
5分钟前
KINGAZX完成签到 ,获得积分10
6分钟前
稻子完成签到 ,获得积分10
6分钟前
6分钟前
柔弱友菱发布了新的文献求助10
6分钟前
子郁完成签到 ,获得积分10
7分钟前
爱静静应助科研通管家采纳,获得10
7分钟前
爱静静应助科研通管家采纳,获得10
7分钟前
爱静静应助科研通管家采纳,获得20
7分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808127
求助须知:如何正确求助?哪些是违规求助? 3352735
关于积分的说明 10360201
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810367
科研通“疑难数据库(出版商)”最低求助积分说明 766058