Deep Learning Radiomics Nomogram Based on Magnetic Resonance Imaging for Differentiating Type I/II Epithelial Ovarian Cancer

列线图 接收机工作特性 无线电技术 磁共振成像 布里氏评分 医学 置信区间 人工智能 核医学 放射科 计算机科学 肿瘤科 内科学
作者
Mingxiang Wei,Guannan Feng,Xinyi Wang,Jianye Jia,Yu Zhang,Yao Dai,Cai Qin,Genji Bai,Shuangqing Chen
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (6): 2391-2401 被引量:6
标识
DOI:10.1016/j.acra.2023.08.002
摘要

Rationale and Objectives To develop and validate a T2-weighted magnetic resonance imaging (MRI)-based deep learning radiomics nomogram (DLRN) to differentiate between type I and type II epithelial ovarian cancer (EOC). Materials and Methods This multicenter study incorporated 437 patients from five centers, divided into training (n = 271), internal validation (n = 68), and external validation (n = 98) sets. The deep learning (DL) model was constructed using the largest orthogonal slices of the tumor area. The extracted radiomics features were employed in building the radiomics model. The clinical model was developed based on clinical characteristics. A DLRN was built by integrating the DL signature, radiomics signature, and independent clinical predictors. Model performances were evaluated through receiver operating characteristic (ROC) analysis, Brier score, calibration curve, and decision curve analysis (DCA). The areas under the ROC curve (AUCs) were compared using the DeLong test. A two-tailed P < 0.05 was considered significantly different. Results The DLRN exhibited satisfactory discrimination between type I and type II EOC with the AUC of 0.888 (95% confidence interval [CI] 0.810, 0.966) and 0.866 (95% CI 0.786, 0.946) in the internal and external validation sets, respectively. These AUCs significantly exceeded those of the clinical model (P = 0.013 and 0.043, in the internal and external validation sets, respectively). The DLRN demonstrated optimal classification accuracy and clinical application value, according to Brier scores, calibration curves, and DCA. Conclusion A T2-weighted MRI-based DLRN showed promising potential in differentiating between type I and type II EOC, which could offer assistance in clinical decision-making. To develop and validate a T2-weighted magnetic resonance imaging (MRI)-based deep learning radiomics nomogram (DLRN) to differentiate between type I and type II epithelial ovarian cancer (EOC). This multicenter study incorporated 437 patients from five centers, divided into training (n = 271), internal validation (n = 68), and external validation (n = 98) sets. The deep learning (DL) model was constructed using the largest orthogonal slices of the tumor area. The extracted radiomics features were employed in building the radiomics model. The clinical model was developed based on clinical characteristics. A DLRN was built by integrating the DL signature, radiomics signature, and independent clinical predictors. Model performances were evaluated through receiver operating characteristic (ROC) analysis, Brier score, calibration curve, and decision curve analysis (DCA). The areas under the ROC curve (AUCs) were compared using the DeLong test. A two-tailed P < 0.05 was considered significantly different. The DLRN exhibited satisfactory discrimination between type I and type II EOC with the AUC of 0.888 (95% confidence interval [CI] 0.810, 0.966) and 0.866 (95% CI 0.786, 0.946) in the internal and external validation sets, respectively. These AUCs significantly exceeded those of the clinical model (P = 0.013 and 0.043, in the internal and external validation sets, respectively). The DLRN demonstrated optimal classification accuracy and clinical application value, according to Brier scores, calibration curves, and DCA. A T2-weighted MRI-based DLRN showed promising potential in differentiating between type I and type II EOC, which could offer assistance in clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦发布了新的文献求助10
1秒前
科研通AI5应助Erick采纳,获得30
1秒前
3秒前
5秒前
zommen完成签到 ,获得积分10
5秒前
Xiaoxiao应助LT采纳,获得10
6秒前
ha发布了新的文献求助10
6秒前
dnmd发布了新的文献求助10
9秒前
111发布了新的文献求助10
10秒前
11秒前
kakafan发布了新的文献求助10
14秒前
15秒前
16秒前
我的名字是山脉完成签到,获得积分10
20秒前
nandou发布了新的文献求助10
22秒前
研友_VZG7GZ应助研究生采纳,获得10
23秒前
打打应助自由的星星采纳,获得10
24秒前
万能图书馆应助lyj334采纳,获得10
26秒前
充电宝应助难过小懒虫采纳,获得10
26秒前
独特的思烟完成签到 ,获得积分10
31秒前
Tracy完成签到,获得积分10
33秒前
xiaolei完成签到 ,获得积分10
34秒前
35秒前
37秒前
邓佳鑫Alan发布了新的文献求助10
37秒前
lyj334发布了新的文献求助10
38秒前
44秒前
燃冉之然应助冰拿铁采纳,获得10
44秒前
昀云发布了新的文献求助10
45秒前
47秒前
49秒前
by完成签到,获得积分10
50秒前
51秒前
科研通AI5应助科研通管家采纳,获得10
54秒前
在水一方应助科研通管家采纳,获得10
54秒前
小蘑菇应助科研通管家采纳,获得10
54秒前
54秒前
54秒前
11128完成签到 ,获得积分10
54秒前
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Technologies supporting mass customization of apparel: A pilot project 300
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780636
求助须知:如何正确求助?哪些是违规求助? 3326165
关于积分的说明 10225991
捐赠科研通 3041257
什么是DOI,文献DOI怎么找? 1669261
邀请新用户注册赠送积分活动 799040
科研通“疑难数据库(出版商)”最低求助积分说明 758685