Predicting mechanical properties of CO2 hydrates: machine learning insights from molecular dynamics simulations

占用率 水合物 笼状水合物 分子动力学 理论(学习稳定性) 模数 材料科学 计算机科学 机器学习 化学 计算化学 工程类 复合材料 建筑工程 有机化学
作者
Yu Zhang,Zixuan Song,Yan‐Wen Lin,Qiao Shi,Yongchao Hao,Yuequn Fu,Jianyang Wu,Zhisen Zhang
出处
期刊:Journal of Physics: Condensed Matter [IOP Publishing]
卷期号:36 (1): 015101-015101 被引量:7
标识
DOI:10.1088/1361-648x/acfa55
摘要

Abstract Understanding the mechanical properties of CO 2 hydrate is crucial for its diverse sustainable applications such as CO 2 geostorage and natural gas hydrate mining. In this work, classic molecular dynamics (MD) simulations are employed to explore the mechanical characteristics of CO 2 hydrate with varying occupancy rates and occupancy distributions of guest molecules. It is revealed that the mechanical properties, including maximum stress, critical strain, and Young’s modulus, are not only affected by the cage occupancy rate in both large 5 12 6 2 and small 5 12 cages, but also by the distribution of guest molecules within the cages. Specifically, the presence of vacancies in the 5 12 6 2 large cages significantly impacts the overall mechanical stability compared to 5 12 small cages. Furthermore, four distinct machine learning (ML) models trained using MD results are developed to predict the mechanical properties of CO 2 hydrate with different cage occupancy rates and cage occupancy distributions. Through analyzing ML results, as-developed ML models highlight the importance of the distribution of guest molecules within the cages, as crucial contributor to the overall mechanical stability of CO 2 hydrate. This study contributes new knowledge to the field by providing insights into the mechanical properties of CO 2 hydrates and their dependence on cage occupancy rates and cage occupancy distributions. The findings have implications for the sustainable applications of CO 2 hydrate, and as-developed ML models offer a practical framework for predicting the mechanical properties of CO 2 hydrate in different scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博负一完成签到,获得积分10
1秒前
实验室应助科研通管家采纳,获得30
1秒前
Koalas应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
乐观伟诚发布了新的文献求助10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
nooooorae应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
2秒前
所所应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得100
3秒前
scwang应助科研通管家采纳,获得10
3秒前
3秒前
Hello应助科研通管家采纳,获得10
3秒前
EeeYiz发布了新的文献求助10
3秒前
白凌珍发布了新的文献求助10
4秒前
yuchen12a发布了新的文献求助10
4秒前
ovalCC发布了新的文献求助10
4秒前
5秒前
songjinyan829完成签到,获得积分10
6秒前
bq发布了新的文献求助30
9秒前
10秒前
简单冰巧完成签到 ,获得积分10
10秒前
EeeYiz完成签到,获得积分10
12秒前
12秒前
13秒前
15秒前
15秒前
辛谷方松永旭完成签到 ,获得积分10
15秒前
一只呆呆完成签到 ,获得积分10
16秒前
LC发布了新的文献求助10
18秒前
直率无春完成签到,获得积分10
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208359
求助须知:如何正确求助?哪些是违规求助? 4385928
关于积分的说明 13659138
捐赠科研通 4244820
什么是DOI,文献DOI怎么找? 2328952
邀请新用户注册赠送积分活动 1326741
关于科研通互助平台的介绍 1278980