DCMF-AFNet: An anchor-free photovoltaic hot-spot fault detection network based on deformable context transformer and bi-branch multi-level feature fusion

计算机科学 故障检测与隔离 人工智能 特征提取 异常检测 变压器 模式识别(心理学) 背景(考古学) 特征(语言学) 光伏系统 工程类 电压 哲学 古生物学 电气工程 生物 语言学 执行机构
作者
Tian He,Shuai Hao,Xu Ma,Xizi Sun,Qiulin Zhao,Haobo Sun
出处
期刊:Solar Energy [Elsevier BV]
卷期号:263: 111904-111904 被引量:2
标识
DOI:10.1016/j.solener.2023.111904
摘要

In the process of photovoltaic hot-spot detection by thermal infrared sensors, the fault features cannot be effectively represented due to low pixel ratios and complex environmental interference, which makes it difficult for the detection network to accurately detect hot-spot faults. Therefore, an anchor-free photovoltaic hot-spot fault detection algorithm based on deformable context Transformer and bi-branch multi-level feature fusion is proposed. First, to improve the feature extraction ability of the backbone network for small-scale hot-spot faults, a deformable context Transformer module is constructed. By building an offset network in a multi-headed self-attention mechanism, dynamic and static context information with small-scale fault features can be explored from shallow feature maps. Second, to solve the problem of low target saliency due to the complex background interference, a bi-branch multi-level feature fusion module is designed to aggregate global and local multi-level features in a parallel fusion manner, enabling the detection network to rapidly focus on the fault target region in complex environments. Then, an anchor-free mechanism is introduced, and a dynamic task alignment prediction module is proposed to avoid feature misalignment in the classification and localization tasks and further improve the algorithm detection accuracy. Finally, to verify the superiority of the proposed network, seven detection algorithms are selected for comparison experiments. The experimental results show that the DCMF-AFNet network can accurately detect multi-scale hot-spot targets under various harsh conditions, and the detection accuracy can reach 87.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北北发布了新的文献求助10
刚刚
卑鄙的熊发布了新的文献求助10
1秒前
yiyy完成签到,获得积分10
1秒前
酷炫青烟完成签到,获得积分10
2秒前
孙哈哈完成签到 ,获得积分10
3秒前
dddd发布了新的文献求助10
3秒前
MX应助个性元枫采纳,获得20
3秒前
3秒前
苏苏发布了新的文献求助10
3秒前
研友_VZG7GZ应助典雅小鸽子采纳,获得10
4秒前
4秒前
阿飞完成签到 ,获得积分10
4秒前
爆米花应助bluechen800205采纳,获得10
5秒前
俞孤风发布了新的文献求助10
6秒前
6秒前
bonnie发布了新的文献求助10
6秒前
科研通AI5应助机灵落雁采纳,获得40
6秒前
淡漠与感动完成签到,获得积分10
7秒前
赘婿应助小菜鸡采纳,获得10
8秒前
酷波er应助无恃有恐采纳,获得10
9秒前
舒适的幻桃完成签到,获得积分20
9秒前
9秒前
飘逸楷瑞完成签到,获得积分10
10秒前
10秒前
10秒前
orangel发布了新的文献求助10
10秒前
yfwuy完成签到,获得积分20
10秒前
10秒前
11秒前
呐呐呐发布了新的文献求助10
11秒前
燕小丙完成签到,获得积分10
12秒前
小小威廉完成签到,获得积分10
13秒前
阿伦发布了新的文献求助10
13秒前
李爱国应助包包采纳,获得10
13秒前
无花果应助舒适的幻桃采纳,获得10
15秒前
15秒前
雷梦芝发布了新的文献求助10
16秒前
16秒前
典雅大白菜真实的钥匙完成签到,获得积分10
16秒前
被门夹到鸟完成签到,获得积分10
17秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842381
求助须知:如何正确求助?哪些是违规求助? 3384455
关于积分的说明 10535108
捐赠科研通 3104971
什么是DOI,文献DOI怎么找? 1709892
邀请新用户注册赠送积分活动 823415
科研通“疑难数据库(出版商)”最低求助积分说明 774059