DeepEpi: Deep Learning Model for Predicting Gene Expression Regulation Based on Epigenetic Histone Modifications

组蛋白 表观遗传学 染色质 计算生物学 计算机科学 卷积神经网络 人工智能 深度学习 功能(生物学) 基因 基因表达调控 生物 机器学习 遗传学
作者
Rania Hamdy,Yasser Omar,Fahima A. Maghraby
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:19 (7): 624-640
标识
DOI:10.2174/1574893618666230818121046
摘要

Background: Histone modification is a vital element in gene expression regulation. The way in which these proteins bind to the DNA impacts whether or not a gene may be expressed. Although those factors cannot influence DNA construction, they can influence how it is transcribed. Objective: Each spatial location in DNA has its function, so the spatial arrangement of chromatin modifications affects how the gene can express. Also, gene regulation is affected by the type of histone modification combinations that are present on the gene and depends on the spatial distributional pattern of these modifications and how long these modifications read on a gene region. So, this study aims to know how to model Long-range spatial genome data and model complex dependencies among Histone reads. Methods: The Convolution Neural Network (CNN) is used to model all data features in this paper. It can detect patterns in histones signals and preserve the spatial information of these patterns. It also uses the concept of memory in long short-term memory (LSTM), using vanilla LSTM, Bi-Directional LSTM, or Stacked LSTM to preserve long-range histones signals. Additionally, it tries to combine these methods using ConvLSTM or uses them together with the aid of a self-attention. Results: Based on the results, the combination of CNN, LSTM with the self-attention mechanism obtained an Area under the Curve (AUC) score of 88.87% over 56 cell types. Conclusion: The result outperforms the present state-of-the-art model and provides insight into how combinatorial interactions between histone modification marks can control gene expression. The source code is available at https://github.com/RaniaHamdy/DeepEpi.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
森sen完成签到 ,获得积分10
刚刚
瑜凡发布了新的文献求助30
1秒前
SciGPT应助矮小的猕猴桃采纳,获得10
1秒前
nsc发布了新的文献求助10
2秒前
2秒前
星辰大海应助古月采纳,获得10
2秒前
秦博阳发布了新的文献求助10
5秒前
5秒前
5秒前
节能减排发布了新的文献求助10
5秒前
嘟嘟完成签到 ,获得积分10
8秒前
8秒前
上官若男应助安静的香菱采纳,获得10
11秒前
xmz应助傲娇松鼠采纳,获得10
11秒前
专注绿真完成签到,获得积分10
11秒前
七七发布了新的文献求助10
11秒前
12秒前
qizhixu发布了新的文献求助10
12秒前
九月初五完成签到,获得积分10
13秒前
14秒前
15秒前
18166992885完成签到 ,获得积分10
16秒前
小马甲应助zxb采纳,获得10
17秒前
赘婿应助Happy采纳,获得10
17秒前
17秒前
19秒前
我是老大应助感动的山槐采纳,获得10
20秒前
LMZ发布了新的文献求助10
20秒前
smallnaodai完成签到,获得积分20
20秒前
诚心八宝粥完成签到,获得积分10
20秒前
所所应助aganer采纳,获得10
21秒前
22秒前
科研通AI5应助玺烊烊采纳,获得30
24秒前
26秒前
26秒前
yyds发布了新的文献求助10
26秒前
zxb完成签到,获得积分10
26秒前
27秒前
smallnaodai发布了新的文献求助10
27秒前
小全完成签到,获得积分10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794440
求助须知:如何正确求助?哪些是违规求助? 3339328
关于积分的说明 10295355
捐赠科研通 3055891
什么是DOI,文献DOI怎么找? 1676876
邀请新用户注册赠送积分活动 804829
科研通“疑难数据库(出版商)”最低求助积分说明 762149