Detecting Adverse Pathology of Prostate Cancer With a Deep Learning Approach Based on a 3D Swin‐Transformer Model and Biparametric MRI: A Multicenter Retrospective Study

医学 前列腺癌 前列腺切除术 接收机工作特性 放射科 前列腺 回顾性队列研究 前列腺活检 队列 活检 病理 内科学 癌症
作者
Litao Zhao,Jie Bao,Ximing Wang,Xiaomeng Qiao,Junkang Shen,Yueyue Zhang,Pengfei Jin,Yanting Ji,Ji Zhang,Yueting Su,Libiao Ji,Zhenkai Li,Jian Lü,Chunhong Hu,Hailin Shen,Jie Tian,Jiangang Liu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (6): 2101-2112 被引量:3
标识
DOI:10.1002/jmri.28963
摘要

Background Accurately detecting adverse pathology (AP) presence in prostate cancer patients is important for personalized clinical decision‐making. Radiologists' assessment based on clinical characteristics showed poor performance for detecting AP presence. Purpose To develop deep learning models for detecting AP presence, and to compare the performance of these models with those of a clinical model (CM) and radiologists' interpretation (RI). Study Type Retrospective. Population Totally, 616 men from six institutions who underwent radical prostatectomy, were divided into a training cohort (508 patients from five institutions) and an external validation cohort (108 patients from one institution). Field Strength/Sequences T2‐weighted imaging with a turbo spin echo sequence and diffusion‐weighted imaging with a single‐shot echo plane‐imaging sequence at 3.0 T. Assessment The reference standard for AP was histopathological extracapsular extension, seminal vesicle invasion, or positive surgical margins. A deep learning model based on the Swin‐Transformer network (TransNet) was developed for detecting AP. An integrated model was also developed, which combined TransNet signature with clinical characteristics (TransCL). The clinical characteristics included biopsy Gleason grade group, Prostate Imaging Reporting and Data System scores, prostate‐specific antigen, ADC value, and the lesion maximum cross‐sectional diameter. Statistical Tests Model and radiologists' performance were assessed using area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. The Delong test was used to evaluate difference in AUC. P < 0.05 was considered significant. Results The AUC of TransCL for detecting AP presence was 0.813 (95% CI, 0.726–0.882), which was higher than that of TransNet (0.791 [95% CI, 0.702–0.863], P = 0.429), and significantly higher than those of CM (0.749 [95% CI, 0.656–0.827]) and RI (0.664 [95% CI, 0.566–0.752]). Data Conclusion TransNet and TransCL have potential to aid in detecting the presence of AP and some single adverse pathologic features. Level of Evidence 4 Technical Efficacy Stage 4
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏夏完成签到,获得积分10
刚刚
1秒前
1秒前
天文发布了新的文献求助10
1秒前
2秒前
cathy发布了新的文献求助10
2秒前
彭于晏应助呆萌小兔子采纳,获得10
3秒前
3秒前
呼啦啦完成签到,获得积分10
4秒前
4秒前
小蘑菇应助344061512采纳,获得10
5秒前
maodou发布了新的文献求助10
5秒前
中国大陆发布了新的文献求助10
5秒前
小李发布了新的文献求助10
5秒前
研友_VZG7GZ应助石思炜采纳,获得10
5秒前
科研助手6应助舒适路人采纳,获得10
6秒前
6秒前
车厘子发布了新的文献求助10
7秒前
autobot1应助hh采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
程诺完成签到,获得积分10
9秒前
sia完成签到,获得积分10
9秒前
9秒前
可爱的函函应助阮楷瑞采纳,获得10
9秒前
丰富飞阳完成签到,获得积分10
10秒前
11秒前
科研小子发布了新的文献求助10
11秒前
balabala发布了新的文献求助10
11秒前
李菁奕给李菁奕的求助进行了留言
12秒前
lalala完成签到,获得积分10
12秒前
科研通AI2S应助xiaowu采纳,获得10
12秒前
小爷发布了新的文献求助10
12秒前
syhjxk发布了新的文献求助10
13秒前
魔幻灯泡完成签到,获得积分10
13秒前
缓慢的秋莲完成签到,获得积分10
13秒前
EineK完成签到,获得积分20
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786651
求助须知:如何正确求助?哪些是违规求助? 3332319
关于积分的说明 10255052
捐赠科研通 3047657
什么是DOI,文献DOI怎么找? 1672658
邀请新用户注册赠送积分活动 801463
科研通“疑难数据库(出版商)”最低求助积分说明 760204