清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Source-free domain adaptation with Class Prototype Discovery

计算机科学 班级(哲学) 人工智能 领域(数学分析) 机器学习 正规化(语言学) 适应(眼睛) 数据挖掘 数学 光学 物理 数学分析
作者
Lihua Zhou,Nianxin Li,Mao Ye,Xiatian Zhu,Song Tang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:145: 109974-109974 被引量:16
标识
DOI:10.1016/j.patcog.2023.109974
摘要

Source-free domain adaptation requires no access to the source domain training data during unsupervised domain adaption. This is critical for meeting particular data sharing, privacy, and license constraints, whilst raising novel algorithmic challenges. Existing source-free domain adaptation methods rely on either generating pseudo samples/prototypes of source or target domain style, or simply leveraging pseudo-labels (self-training). They suffer from low-quality generated samples/prototypes or noisy pseudo-label target samples. In this work, we address both limitations by introducing a novel Class Prototype Discovery (CPD) method. In contrast to all alternatives, our CPD is established on a set of semantic class prototypes each constructed for representing a specific class. By designing a classification score based prototype learning mechanism, we reformulate the source-free domain adaptation problem to class prototype optimization using all the target domain training data, and without the need for data generation. Then, class prototypes are used to cluster target features to assign them pseudo-labels, which highly complements the conventional self-training strategy. Besides, a prototype regularization is introduced for exploiting well-established distribution alignment based on pseudo-labeled target samples and class prototypes. Along with theoretical analysis, we conduct extensive experiments on three standard benchmarks to validate the performance advantages of our CPD over the state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
F7erxl完成签到,获得积分10
8秒前
23秒前
35秒前
Leo完成签到 ,获得积分10
42秒前
knn完成签到 ,获得积分10
44秒前
喜悦的香之完成签到 ,获得积分10
51秒前
稻子完成签到 ,获得积分10
1分钟前
1分钟前
心想事成完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
实力不允许完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
沉沉完成签到 ,获得积分0
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
小嚣张完成签到,获得积分10
4分钟前
bc应助科研通管家采纳,获得20
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
6分钟前
bc应助科研通管家采纳,获得10
6分钟前
6分钟前
满意人英完成签到,获得积分10
6分钟前
6分钟前
自然幼翠发布了新的文献求助30
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
firesquall发布了新的文献求助10
7分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800936
求助须知:如何正确求助?哪些是违规求助? 3346489
关于积分的说明 10329428
捐赠科研通 3063031
什么是DOI,文献DOI怎么找? 1681317
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714