Natural language processing for automatic evaluation of free-text answers — a feasibility study based on the European Diploma in Radiology examination

短信 人工智能 自然语言处理 计算机科学 Python(编程语言) 多项选择 情报检索 医学 放射科 万维网 显著性差异 内科学 操作系统
作者
Fabian Stoehr,Benedikt Kämpgen,Lukáš Müller,Laura Oleaga,Vanesa Junquero,Cristina Merino,Peter Mildenberger,Roman Kloeckner
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:14 (1) 被引量:2
标识
DOI:10.1186/s13244-023-01507-5
摘要

Written medical examinations consist of multiple-choice questions and/or free-text answers. The latter require manual evaluation and rating, which is time-consuming and potentially error-prone. We tested whether natural language processing (NLP) can be used to automatically analyze free-text answers to support the review process.The European Board of Radiology of the European Society of Radiology provided representative datasets comprising sample questions, answer keys, participant answers, and reviewer markings from European Diploma in Radiology examinations. Three free-text questions with the highest number of corresponding answers were selected: Questions 1 and 2 were "unstructured" and required a typical free-text answer whereas question 3 was "structured" and offered a selection of predefined wordings/phrases for participants to use in their free-text answer. The NLP engine was designed using word lists, rule-based synonyms, and decision tree learning based on the answer keys and its performance tested against the gold standard of reviewer markings.After implementing the NLP approach in Python, F1 scores were calculated as a measure of NLP performance: 0.26 (unstructured question 1, n = 96), 0.33 (unstructured question 2, n = 327), and 0.5 (more structured question, n = 111). The respective precision/recall values were 0.26/0.27, 0.4/0.32, and 0.62/0.55.This study showed the successful design of an NLP-based approach for automatic evaluation of free-text answers in the EDiR examination. Thus, as a future field of application, NLP could work as a decision-support system for reviewers and support the design of examinations being adjusted to the requirements of an automated, NLP-based review process.Natural language processing can be successfully used to automatically evaluate free-text answers, performing better with more structured question-answer formats. Furthermore, this study provides a baseline for further work applying, e.g., more elaborated NLP approaches/large language models.• Free-text answers require manual evaluation, which is time-consuming and potentially error-prone. • We developed a simple NLP-based approach - requiring only minimal effort/modeling - to automatically analyze and mark free-text answers. • Our NLP engine has the potential to support the manual evaluation process. • NLP performance is better on a more structured question-answer format.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Ryy发布了新的文献求助10
5秒前
苏洛发布了新的文献求助10
5秒前
杨乃彬完成签到,获得积分10
11秒前
光亮千易完成签到,获得积分10
12秒前
木木三发布了新的文献求助10
12秒前
yu完成签到 ,获得积分10
14秒前
16秒前
ding应助无心的土豆采纳,获得10
17秒前
21秒前
22秒前
23秒前
Amo应助欢喜的天空采纳,获得10
23秒前
25秒前
科研通AI5应助kingmantj采纳,获得30
25秒前
26秒前
滕皓轩发布了新的文献求助10
26秒前
咖啡先生发布了新的文献求助10
26秒前
26秒前
夜盏丿完成签到,获得积分10
27秒前
风中的安珊完成签到,获得积分10
29秒前
30秒前
30秒前
Lucas应助前往宇宙尽头采纳,获得10
32秒前
SciGPT应助木头采纳,获得10
35秒前
35秒前
余木木完成签到 ,获得积分10
35秒前
骆驼林子发布了新的文献求助10
37秒前
乐乐应助做科研的小丸子采纳,获得10
38秒前
39秒前
墨子完成签到 ,获得积分10
39秒前
kingmantj发布了新的文献求助30
40秒前
前往宇宙尽头完成签到,获得积分10
40秒前
滕皓轩发布了新的文献求助10
41秒前
44秒前
Owen应助烂漫的烙采纳,获得10
44秒前
小蘑菇应助黑妖采纳,获得10
45秒前
47秒前
Ryy发布了新的文献求助10
51秒前
华仔应助月亮采纳,获得10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209307
捐赠科研通 3037454
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976