已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Streamline video-based automatic fabric pattern recognition using Bayesian-optimized convolutional neural network

卷积神经网络 人工智能 计算机科学 超参数 模式识别(心理学) 水准点(测量) 特征(语言学) 人工神经网络 过程(计算) 贝叶斯概率 机器学习 贝叶斯网络 计算机视觉 语言学 哲学 大地测量学 地理 操作系统
作者
Abdullah Al Mamun,M M Nabi,Fahmida Islam,Mahathir Mohammad Bappy,Mohammad Abbas Uddin,Mohammad Sazzad Hossain,Amit Talukder
出处
期刊:Journal of The Textile Institute [Taylor & Francis]
卷期号:: 1-14 被引量:4
标识
DOI:10.1080/00405000.2023.2269760
摘要

AbstractExamining fabric weave patterns (FWPs) is connected to image-based surface texture feature (STF) acquisition, which can be difficult due to the structural complexity of woven fabrics. Randomly capturing static images may not correlate with the entire STF of a fabric. Traditionally, FWPs analysis is conducted by human vision, which causes an intensive cognitive load. Ultimately, the human vision-based cognitive load leads to ineffective quality inspection and error-prone FWPs analysis results. Given the above challenges, this study proposes a new streamlined video-based FWPs recognition method by incorporating Bayesian-optimized convolutional neural network (Bayes Opt-CNN). Essentially, this method is capable of leveraging the spatiotemporal features of the fabric’s intricate surface structure. In this study, to validate the effectiveness of the proposed method, seven types of fabric structures were captured as streamline videos, which were then converted into sequences of image frames. Subsequently, the Bayesian optimization process was introduced to select the best hyperparameters during CNN-based supervised learning for pattern recognition. The evaluation demonstrates that the proposed method outperforms the benchmark method for identifying FWPs.Keywords: Bayesian optimizationconvolutional neural networksclassificationfabric pattern recognitionsurface texture featuresvideo data Disclosure statementNo potential conflict of interest was reported by the authors.Correction StatementThis article has been corrected with minor changes. These changes do not impact the academic content of the article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xr完成签到 ,获得积分10
2秒前
壮观的垣发布了新的文献求助10
2秒前
张云涵发布了新的文献求助30
6秒前
7秒前
贾舒涵发布了新的文献求助10
8秒前
8秒前
8秒前
路痴发布了新的文献求助10
8秒前
hani完成签到,获得积分10
10秒前
Cx发布了新的文献求助10
10秒前
zhang完成签到 ,获得积分20
10秒前
追寻的牛排完成签到,获得积分10
10秒前
华仔应助红白夹心升糖采纳,获得10
11秒前
陶醉桐完成签到 ,获得积分10
12秒前
花开四海完成签到 ,获得积分10
13秒前
牧研完成签到,获得积分0
14秒前
伍美华完成签到,获得积分20
15秒前
15秒前
16秒前
加菲丰丰应助加贝采纳,获得30
17秒前
壮观的垣完成签到,获得积分10
18秒前
sarah完成签到,获得积分10
18秒前
充电宝应助冷艳晓丝采纳,获得10
18秒前
19秒前
慕青应助zayne采纳,获得10
20秒前
Eric发布了新的文献求助10
20秒前
123发布了新的文献求助10
21秒前
默默的棒棒糖完成签到 ,获得积分10
22秒前
药剂机智小仓鼠完成签到 ,获得积分10
22秒前
23秒前
MchemG应助呼呼兔采纳,获得10
23秒前
23秒前
路痴完成签到,获得积分20
24秒前
MchemG应助de采纳,获得10
24秒前
星辰大海应助赵坤煊采纳,获得10
25秒前
丘比特应助huihui采纳,获得10
26秒前
11完成签到,获得积分20
26秒前
27秒前
Pufferfish发布了新的文献求助10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787862
求助须知:如何正确求助?哪些是违规求助? 3333506
关于积分的说明 10262111
捐赠科研通 3049278
什么是DOI,文献DOI怎么找? 1673487
邀请新用户注册赠送积分活动 801982
科研通“疑难数据库(出版商)”最低求助积分说明 760458