Unified Keypoint-Based Action Recognition Framework via Structured Keypoint Pooling

联营 计算机科学 人工智能 稳健性(进化) 点云 推论 模式识别(心理学) 动作识别 视觉对象识别的认知神经科学 深度学习 目标检测 计算机视觉 对象(语法) 机器学习 基因 班级(哲学) 生物化学 化学
作者
Ryo Hachiuma,Fumiaki Sato,Taiki Sekii
标识
DOI:10.1109/cvpr52729.2023.02199
摘要

This paper simultaneously addresses three limitations associated with conventional skeleton-based action recognition; skeleton detection and tracking errors, poor variety of the targeted actions, as well as person-wise and framewise action recognition. A point cloud deep-learning paradigm is introduced to the action recognition, and a unified framework along with a novel deep neural network architecture called Structured Keypoint Pooling is proposed. The proposed method sparsely aggregates keypoint features in a cascaded manner based on prior knowledge of the data structure (which is inherent in skeletons), such as the instances and frames to which each keypoint belongs, and achieves robustness against input errors. Its less constrained and tracking-free architecture enables time-series keypoints consisting of human skeletons and nonhuman object contours to be efficiently treated as an input 3D point cloud and extends the variety of the targeted action. Furthermore, we propose a Pooling-Switching Trick inspired by Structured Keypoint Pooling. This trick switches the pooling kernels between the training and inference phases to detect person-wise and framewise actions in a weakly supervised manner using only video-level action labels. This trick enables our training scheme to naturally introduce novel data augmentation, which mixes multiple point clouds extracted from different videos. In the experiments, we comprehensively verify the effectiveness of the proposed method against the limitations, and the method outperforms state-of-the-art skeleton-based action recognition and spatio-temporal action localization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘着的鬼完成签到 ,获得积分10
刚刚
007完成签到,获得积分10
刚刚
SciGPT应助WANG采纳,获得20
1秒前
binz完成签到,获得积分10
1秒前
研友_VZG7GZ应助Kikua采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
123321完成签到,获得积分10
4秒前
Ar1stocrat发布了新的文献求助10
5秒前
crane完成签到,获得积分10
6秒前
永恒发布了新的文献求助20
6秒前
6秒前
852应助007采纳,获得10
7秒前
jphu发布了新的文献求助10
7秒前
7秒前
8秒前
10秒前
开朗的钻石完成签到,获得积分10
11秒前
cheng完成签到,获得积分10
11秒前
11秒前
orixero应助adddddd采纳,获得20
12秒前
balabala发布了新的文献求助10
12秒前
轨迹完成签到,获得积分10
12秒前
小马甲应助可爱曼青采纳,获得10
13秒前
高小h发布了新的文献求助10
14秒前
Lucas应助skycool采纳,获得10
16秒前
16秒前
周曦完成签到,获得积分10
17秒前
充电宝应助Hao采纳,获得10
17秒前
欣喜依白发布了新的文献求助10
17秒前
所所应助嘻嘻采纳,获得10
18秒前
一一发布了新的文献求助10
18秒前
jphu完成签到,获得积分10
18秒前
21秒前
淡水鱼完成签到 ,获得积分10
22秒前
一切顺利完成签到,获得积分10
22秒前
qing发布了新的文献求助10
22秒前
Jasper应助哈哈采纳,获得10
23秒前
高小h完成签到,获得积分20
23秒前
24秒前
SYLH应助怪杰采纳,获得10
24秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867299
求助须知:如何正确求助?哪些是违规求助? 3409557
关于积分的说明 10664322
捐赠科研通 3133824
什么是DOI,文献DOI怎么找? 1728495
邀请新用户注册赠送积分活动 833018
科研通“疑难数据库(出版商)”最低求助积分说明 780517