已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multistep short-term wind power forecasting model based on secondary decomposition, the kernel principal component analysis, an enhanced arithmetic optimization algorithm, and error correction

主成分分析 核主成分分析 风电预测 希尔伯特-黄变换 风力发电 核(代数) 算法 计算机科学 维数之咒 人工神经网络 极限学习机 降维 噪音(视频) 电力系统 功率(物理) 数学 人工智能 能量(信号处理) 核方法 支持向量机 工程类 统计 物理 量子力学 组合数学 电气工程 图像(数学)
作者
Guolian Hou,Junjie Wang,Yuzhen Fan
出处
期刊:Energy [Elsevier BV]
卷期号:286: 129640-129640 被引量:37
标识
DOI:10.1016/j.energy.2023.129640
摘要

Wind power forecasting can effectively improve the energy utilization efficiency of a power system and ensure its stable operation. In this study, a novel hybrid multistep prediction model, including the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), variational mode decomposition (VMD), the kernel principal component analysis (KPCA), an enhanced arithmetic optimization algorithm (ENAOA), a bidirectional long short-term memory (BILSTM) neural network, and error correction, was designed for short-term wind power forecasting. First, the collected original wind power data were decomposed into multiple intrinsic mode functions (IMFs) through a secondary decomposition composed of the CEEMDAN and VMD, which eliminated the interactions between different components to achieve denoising. Second, the KPCA was adopted to reduce the dimensionality of the multiple IMFs by extracting the principal components, effectively reducing the complexity of the multidimensional IMF data and improving the forecasting efficiency of the proposed prediction model. Subsequently, an ENAOA was proposed based on the Sobol sequence, adaptive T-distribution, and random walk strategy to optimize the BILSTM parameters. Finally, multiple preprocessed components were predicted by the optimized BILSTM, after which error correction was performed to obtain the final prediction results, which could further reduce the forecast error of the designed prediction model. Based on two sets of data collected from a wind farm in northwest China, the simulation results of 1-step, 4-step, 7-step, and 10-step forecasting revealed that compared with other incomplete models, the various algorithms adopted in the hybrid forecasting model reduced the prediction errors to different degrees, significantly enhanced the wind power prediction performance, and validated the effectiveness and feasibility of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力半凡完成签到,获得积分10
1秒前
欣慰雪巧完成签到 ,获得积分10
2秒前
4秒前
4秒前
1234完成签到 ,获得积分10
4秒前
孤独的无血完成签到,获得积分10
5秒前
科研通AI5应助acihk采纳,获得10
5秒前
JR发布了新的文献求助10
8秒前
科研小白完成签到 ,获得积分10
8秒前
9秒前
科研通AI5应助liugm采纳,获得10
9秒前
叶子发布了新的文献求助10
10秒前
Xixi_yuan完成签到,获得积分10
13秒前
SHAN发布了新的文献求助10
14秒前
15秒前
Ranr完成签到,获得积分10
18秒前
小十一完成签到 ,获得积分10
19秒前
飞天企鹅完成签到,获得积分10
19秒前
jf发布了新的文献求助10
20秒前
23秒前
27秒前
29秒前
小蚊子发布了新的文献求助10
32秒前
liugm发布了新的文献求助10
34秒前
jf完成签到,获得积分10
35秒前
科研通AI5应助房产中介采纳,获得10
35秒前
liway完成签到 ,获得积分10
36秒前
华仔应助鱼王木木采纳,获得10
36秒前
积极的香菇完成签到 ,获得积分10
36秒前
Akim应助小蚊子采纳,获得10
37秒前
深情安青应助likey采纳,获得20
38秒前
子阅完成签到 ,获得积分10
39秒前
40秒前
43秒前
liugm完成签到,获得积分10
44秒前
小菡菡发布了新的文献求助10
45秒前
DIDIDI完成签到 ,获得积分10
48秒前
房产中介发布了新的文献求助10
48秒前
48秒前
李健的小迷弟应助pyc采纳,获得10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777504
求助须知:如何正确求助?哪些是违规求助? 3322864
关于积分的说明 10212146
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667229
邀请新用户注册赠送积分活动 798050
科研通“疑难数据库(出版商)”最低求助积分说明 758201