Natural gas pipeline leak detection based on acoustic signal analysis and feature reconstruction

特征(语言学) 特征提取 人工智能 模式识别(心理学) 计算机科学 信号处理 频域 特征向量 信号(编程语言) 工程类 数字信号处理 计算机视觉 电子工程 哲学 语言学 程序设计语言
作者
Lizhong Yao,Yu Zhang,Tiantian He,Haijun Luo
出处
期刊:Applied Energy [Elsevier BV]
卷期号:352: 121975-121975 被引量:22
标识
DOI:10.1016/j.apenergy.2023.121975
摘要

The natural gas pipeline leakage detection task based on acoustic signal has some problems such as background noise coverage, lack of effective features, and low fault identification accuracy caused by small sample data. However, only one of these problems was usually studied in previous technologies. Almost no one has attempted to challenge multiple issues at the same time. In this study, a natural gas pipeline leak detection model that integrates acoustic feature processing techniques and feature reconstruction is proposed to resolve the above problems collaboratively. This model consists of two components. The first component is a feature processing technique of the acoustic signal that integrates frequency domain vector denoising and time domain associative function feature enhancement. The second component is a one-dimensional convolutional neural network with an expanded structural feature encoder (FAE) for feature reconstruction (FAE-1D-CNN). In the feature processing stage of the acoustic signal, firstly, the acoustic signal collected by the acoustic sensor is discretized into a digital signal. Secondly, the energy modal function is used to perform high/low energy modal clustering of digital signal features. The feature validity is enhanced by adding association factors to the low-energy modal features matrix. A low-pass filtering method is then used in the high-energy modal features to remove the background noise coverage of the high-frequency components. In the fault feature extraction stage, a feature encoder (FAE) is introduced in the 1D-CNN network to extract effective fault features while performing secondary reconstruction of local spatial features, addressing the problem of small sample leakage signals with few effective fault characteristics. The global average pooling layer is used instead of the fully connected layer, and the Softmax function is adopted as the classifier for fault discrimination. The performance of the proposed method was evaluated on the GPLA-12 dataset, and the fault identification accuracy is up to 95.17%. Compared with other competing methods, the method in this paper exhibits optimal performance and has broad application prospects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wangg完成签到,获得积分20
刚刚
善学以致用应助Lian采纳,获得10
2秒前
愉快的曼文完成签到,获得积分10
2秒前
2秒前
3秒前
5秒前
6秒前
6秒前
mfxj完成签到,获得积分10
7秒前
carly发布了新的文献求助10
7秒前
8秒前
小地蛋完成签到 ,获得积分10
8秒前
Acid黄发布了新的文献求助10
9秒前
lotus发布了新的文献求助10
10秒前
婷婷发布了新的文献求助10
11秒前
11秒前
科目三应助xiao123789采纳,获得10
13秒前
tinneywu完成签到,获得积分10
14秒前
15秒前
15秒前
悦耳的黑米完成签到,获得积分20
15秒前
YJ发布了新的文献求助10
15秒前
15秒前
朱朱完成签到,获得积分10
17秒前
科研通AI5应助晚风采纳,获得10
17秒前
20秒前
朱朱发布了新的文献求助10
20秒前
隐形曼青应助tong采纳,获得10
22秒前
沉泽发布了新的文献求助10
22秒前
共享精神应助卓卓采纳,获得10
22秒前
苏夏完成签到 ,获得积分10
24秒前
24秒前
25秒前
25秒前
WJY发布了新的文献求助30
29秒前
一叶扁舟发布了新的文献求助10
29秒前
30秒前
30秒前
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
中华人民共和国出版史料 6 1954年 500
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814204
求助须知:如何正确求助?哪些是违规求助? 3358383
关于积分的说明 10394328
捐赠科研通 3075691
什么是DOI,文献DOI怎么找? 1689451
邀请新用户注册赠送积分活动 812943
科研通“疑难数据库(出版商)”最低求助积分说明 767404