Role of Artificial Intelligence in Drug Discovery and Target Identification in Cancer

药物发现 鉴定(生物学) 抗癌药物 癌症 计算生物学 药品 生物信息学 药理学 内科学 医学 生态学 生物
作者
Vishal Sharma,Amit Kumar Singh,Sanjana Chauhan,Pramod Kumar Sharma,Shubham Chaudhary,Astha Sharma,Omji Porwal,Neeraj Kumar Fuloria
出处
期刊:Current Drug Delivery [Bentham Science Publishers]
卷期号:21 (6): 870-886 被引量:10
标识
DOI:10.2174/1567201821666230905090621
摘要

Abstract: Drug discovery and development (DDD) is a highly complex process that necessitates precise monitoring and extensive data analysis at each stage. Furthermore, the DDD process is both timeconsuming and costly. To tackle these concerns, artificial intelligence (AI) technology can be used, which facilitates rapid and precise analysis of extensive datasets within a limited timeframe. The pathophysiology of cancer disease is complicated and requires extensive research for novel drug discovery and development. The first stage in the process of drug discovery and development involves identifying targets. Cell structure and molecular functioning are complex due to the vast number of molecules that function constantly, performing various roles. Furthermore, scientists are continually discovering novel cellular mechanisms and molecules, expanding the range of potential targets. Accurately identifying the correct target is a crucial step in the preparation of a treatment strategy. Various forms of AI, such as machine learning, neural-based learning, deep learning, and network-based learning, are currently being utilised in applications, online services, and databases. These technologies facilitate the identification and validation of targets, ultimately contributing to the success of projects. This review focuses on the different types and subcategories of AI databases utilised in the field of drug discovery and target identification for cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
杪杪发布了新的文献求助10
3秒前
李健应助政政勇闯世界采纳,获得10
4秒前
6秒前
烟花发布了新的文献求助10
6秒前
6秒前
挽风完成签到 ,获得积分10
6秒前
6秒前
8秒前
Raymond发布了新的文献求助10
9秒前
yyh12138发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
哟哟哟发布了新的文献求助10
13秒前
英姑应助杪杪采纳,获得10
13秒前
13秒前
历史雨完成签到,获得积分10
14秒前
小白完成签到,获得积分10
14秒前
科研通AI5应助水灯霖采纳,获得30
15秒前
哈哈哈完成签到,获得积分10
15秒前
乐乐应助旅途之人采纳,获得10
18秒前
Cindy发布了新的文献求助10
18秒前
19秒前
完美世界应助卡皮巴拉yuan采纳,获得10
20秒前
Lucas应助yyh12138采纳,获得10
25秒前
小蘑菇应助缓慢又蓝采纳,获得20
25秒前
25秒前
111发布了新的文献求助10
26秒前
27秒前
旅途之人完成签到,获得积分10
28秒前
29秒前
30秒前
Mao完成签到,获得积分10
31秒前
脑洞疼应助山山而川采纳,获得10
32秒前
水灯霖发布了新的文献求助30
33秒前
Echo1128完成签到 ,获得积分10
33秒前
Accept2024发布了新的文献求助30
33秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782187
求助须知:如何正确求助?哪些是违规求助? 3327590
关于积分的说明 10232533
捐赠科研通 3042546
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758844