Interactive Explainable Deep Learning Model Informs Prostate Cancer Diagnosis at MRI

医学 接收机工作特性 前列腺癌 放射科 曼惠特尼U检验 前列腺切除术 前列腺 精确检验 磁共振成像 活检 癌症 外科 内科学
作者
Charlie Alexander Hamm,Georg Lukas Baumgärtner,Felix Bießmann,Nick Lasse Beetz,Alexander Hartenstein,Lynn Jeanette Savic,Konrad Froböse,Franziska Dräger,Simon Schallenberg,Madhuri Rudolph,Alexander Baur,Bernd Hamm,Matthias Haas,Sebastian Hofbauer,Hannes Cash,Tobias Penzkofer
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (4) 被引量:50
标识
DOI:10.1148/radiol.222276
摘要

Background Clinically significant prostate cancer (PCa) diagnosis at MRI requires accurate and efficient radiologic interpretation. Although artificial intelligence may assist in this task, lack of transparency has limited clinical translation. Purpose To develop an explainable artificial intelligence (XAI) model for clinically significant PCa diagnosis at biparametric MRI using Prostate Imaging Reporting and Data System (PI-RADS) features for classification justification. Materials and Methods This retrospective study included consecutive patients with histopathologic analysis-proven prostatic lesions who underwent biparametric MRI and biopsy between January 2012 and December 2017. After image annotation by two radiologists, a deep learning model was trained to detect the index lesion; classify PCa, clinically significant PCa (Gleason score ≥ 7), and benign lesions (eg, prostatitis); and justify classifications using PI-RADS features. Lesion- and patient-based performance were assessed using fivefold cross validation and areas under the receiver operating characteristic curve. Clinical feasibility was tested in a multireader study and by using the external PROSTATEx data set. Statistical evaluation of the multireader study included Mann-Whitney U and exact Fisher-Yates test. Results Overall, 1224 men (median age, 67 years; IQR, 62-73 years) had 3260 prostatic lesions (372 lesions with Gleason score of 6; 743 lesions with Gleason score of ≥ 7; 2145 benign lesions). XAI reliably detected clinically significant PCa in internal (area under the receiver operating characteristic curve, 0.89) and external test sets (area under the receiver operating characteristic curve, 0.87) with a sensitivity of 93% (95% CI: 87, 98) and an average of one false-positive finding per patient. Accuracy of the visual and textual explanations of XAI classifications was 80% (1080 of 1352), confirmed by experts. XAI-assisted readings improved the confidence (4.1 vs 3.4 on a five-point Likert scale; P = .007) of nonexperts in assessing PI-RADS 3 lesions, reducing reading time by 58 seconds (P = .009). Conclusion The explainable AI model reliably detected and classified clinically significant prostate cancer and improved the confidence and reading time of nonexperts while providing visual and textual explanations using well-established imaging features. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Chapiro in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莽莽发布了新的文献求助10
1秒前
王小敏敏儿完成签到,获得积分10
1秒前
天天快乐应助蛋堡采纳,获得10
1秒前
ATOM完成签到,获得积分10
1秒前
1秒前
annian完成签到,获得积分10
1秒前
Owen应助WSDSG采纳,获得10
1秒前
手握春夏给手握春夏的求助进行了留言
1秒前
ELITOmiko完成签到,获得积分10
2秒前
科研通AI2S应助Mtt采纳,获得10
2秒前
无辜的从云完成签到,获得积分20
2秒前
dalei001完成签到 ,获得积分10
3秒前
隐形的凡阳完成签到,获得积分10
3秒前
欧皇完成签到,获得积分10
3秒前
yeu103325应助dzh采纳,获得10
4秒前
Ciwei发布了新的文献求助10
4秒前
lili完成签到,获得积分10
4秒前
4秒前
Jasper应助酸奶不吃鱼采纳,获得10
5秒前
5秒前
5秒前
李爱国应助野性的马里奥采纳,获得10
5秒前
干净的夏天完成签到,获得积分10
6秒前
annian发布了新的文献求助10
6秒前
shtnice发布了新的文献求助10
6秒前
酷波er应助欧皇采纳,获得10
6秒前
HT完成签到,获得积分20
6秒前
小刘完成签到,获得积分10
6秒前
8秒前
果实发布了新的文献求助10
8秒前
我是老大应助小王采纳,获得10
8秒前
8秒前
9秒前
9秒前
三白眼发布了新的文献求助10
10秒前
猪四郎发布了新的文献求助10
10秒前
HRB完成签到,获得积分10
11秒前
13秒前
chengwei完成签到,获得积分20
13秒前
OuO发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473503
求助须知:如何正确求助?哪些是违规求助? 4575665
关于积分的说明 14353545
捐赠科研通 4503157
什么是DOI,文献DOI怎么找? 2467534
邀请新用户注册赠送积分活动 1455373
关于科研通互助平台的介绍 1429357