亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interactive Explainable Deep Learning Model Informs Prostate Cancer Diagnosis at MRI

医学 接收机工作特性 前列腺癌 放射科 曼惠特尼U检验 前列腺切除术 前列腺 精确检验 磁共振成像 活检 癌症 外科 内科学
作者
Charlie Alexander Hamm,Georg L. Baumgärtner,Felix Bießmann,Nick Lasse Beetz,Alexander Hartenstein,Lynn Jeanette Savic,Konrad Froböse,Franziska Dräger,Simon Schallenberg,Madhuri Rudolph,Alexander Baur,Bernd Hamm,Matthias Haas,Sebastian Hofbauer,Hannes Cash,Tobias Penzkofer
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (4) 被引量:41
标识
DOI:10.1148/radiol.222276
摘要

Background Clinically significant prostate cancer (PCa) diagnosis at MRI requires accurate and efficient radiologic interpretation. Although artificial intelligence may assist in this task, lack of transparency has limited clinical translation. Purpose To develop an explainable artificial intelligence (XAI) model for clinically significant PCa diagnosis at biparametric MRI using Prostate Imaging Reporting and Data System (PI-RADS) features for classification justification. Materials and Methods This retrospective study included consecutive patients with histopathologic analysis-proven prostatic lesions who underwent biparametric MRI and biopsy between January 2012 and December 2017. After image annotation by two radiologists, a deep learning model was trained to detect the index lesion; classify PCa, clinically significant PCa (Gleason score ≥ 7), and benign lesions (eg, prostatitis); and justify classifications using PI-RADS features. Lesion- and patient-based performance were assessed using fivefold cross validation and areas under the receiver operating characteristic curve. Clinical feasibility was tested in a multireader study and by using the external PROSTATEx data set. Statistical evaluation of the multireader study included Mann-Whitney U and exact Fisher-Yates test. Results Overall, 1224 men (median age, 67 years; IQR, 62-73 years) had 3260 prostatic lesions (372 lesions with Gleason score of 6; 743 lesions with Gleason score of ≥ 7; 2145 benign lesions). XAI reliably detected clinically significant PCa in internal (area under the receiver operating characteristic curve, 0.89) and external test sets (area under the receiver operating characteristic curve, 0.87) with a sensitivity of 93% (95% CI: 87, 98) and an average of one false-positive finding per patient. Accuracy of the visual and textual explanations of XAI classifications was 80% (1080 of 1352), confirmed by experts. XAI-assisted readings improved the confidence (4.1 vs 3.4 on a five-point Likert scale; P = .007) of nonexperts in assessing PI-RADS 3 lesions, reducing reading time by 58 seconds (P = .009). Conclusion The explainable AI model reliably detected and classified clinically significant prostate cancer and improved the confidence and reading time of nonexperts while providing visual and textual explanations using well-established imaging features. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Chapiro in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜的紫菜完成签到 ,获得积分10
8秒前
我是老大应助流沙无言采纳,获得10
9秒前
10秒前
10秒前
wyz完成签到 ,获得积分10
11秒前
桐桐应助张子烜采纳,获得10
13秒前
lalalatiancai发布了新的文献求助10
16秒前
19秒前
稳重的小刺猬完成签到,获得积分10
22秒前
张子烜完成签到,获得积分10
24秒前
流沙无言发布了新的文献求助10
26秒前
MchemG完成签到,获得积分0
35秒前
48秒前
兴奋的狗发布了新的文献求助20
48秒前
郑波涛发布了新的文献求助10
52秒前
1分钟前
yangjoy发布了新的文献求助10
1分钟前
科研通AI5应助ljs采纳,获得10
1分钟前
bbdan发布了新的文献求助10
1分钟前
1分钟前
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
1分钟前
善学以致用应助bbdan采纳,获得10
1分钟前
ljs发布了新的文献求助10
1分钟前
思源应助郑波涛采纳,获得10
1分钟前
1分钟前
1分钟前
云氲发布了新的文献求助10
1分钟前
tonghau895完成签到 ,获得积分10
1分钟前
SCINEXUS发布了新的文献求助50
1分钟前
学霸宇大王完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
活泼的阁发布了新的文献求助10
2分钟前
云氲完成签到 ,获得积分10
2分钟前
Hello应助活泼的阁采纳,获得10
2分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847627
求助须知:如何正确求助?哪些是违规求助? 3390308
关于积分的说明 10561356
捐赠科研通 3110626
什么是DOI,文献DOI怎么找? 1714425
邀请新用户注册赠送积分活动 825231
科研通“疑难数据库(出版商)”最低求助积分说明 775390