内质网
生物
螺旋(腹足类)
管腔(解剖学)
生物物理学
细胞生物学
结晶学
解剖
动物
化学
腹足纲
作者
Lu Xu,Yun Xiang,Junjie Hu
摘要
ABSTRACT The width of cisternal structures in the endoplasmic reticulum (ER) is maintained by the ER-resident protein Climp63 (also known as CKAP4). Self-association of the Climp63 luminal domain (LD), even though moderate, plays a key role in shaping ER sheets. However, the molecular basis of luminal spacing remains elusive. Here, we analyzed the homotypic interactions of the Climp63 LD using deep learning-predicted structures. The LD is highly α-helical, with a flexible leading helix followed by a five-helix bundle (5HB). Charge-based trans associations were formed between the tip of the 5HB and the C-terminus of the LD, consistent with generating a width of ∼50 nm for ER sheets. The leading helix of the LD was dispensable for homotypic interactions but packing of the 5HB regulated self-association. The density of Climp63, likely reflecting the strength of cis interactions, influenced the ER width, which was maintained by trans interactions. These results indicate that a general principle in maintaining membrane tethering is multi-modular self-association.
科研通智能强力驱动
Strongly Powered by AbleSci AI