Classification of precancerous lesions based on fusion of multiple hierarchical features

人工智能 计算机科学 模式识别(心理学) 卷积神经网络 深度学习 分类器(UML) 支持向量机 定向梯度直方图 特征(语言学) 直方图 特征提取 图像(数学) 语言学 哲学
作者
Huijun Zhou,Zhenyang Liu,Ting Li,Yifei Chen,Wei Huang,Zijian Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:229: 107301-107301 被引量:23
标识
DOI:10.1016/j.cmpb.2022.107301
摘要

To investigate an identification method for precancerous gastric cancer based on the fusion of superficial features and deep features of gastroscopic images. The purpose of this study is to make most use of superficial features and deep features to provide clinicians with clinical decision support to assist the diagnosis of precancerous gastric diseases and reduce the workload of doctors.According to the nature of gastroscopic images, 75-dimensional shallow features were manually designed, including histogram features, texture features and high-order features of the image; then, based on the constructed convolutional neural networks such as ResNet and GoogLeNet, before the output layer. A fully connected layer is added as the deep feature of the image. In order to ensure consistent feature weights, the number of neurons in the fully connected layer is designed to be 75 dimensions. Therefore, the superficial and deep features of the image are concatenated, and a machine learning classifier is used to identify gastric polyps, there are three types of gastric precancerous diseases such as gastric polyps, gastric ulcers and gastric erosions.A dataset with 420 images was collected for each disease, and divided into a training set and a test set with a ratio of 5:1, and then based on the dataset, three methods, such as traditional machine learning, deep learning, and feature fusion, were used respectively. For model training and testing of traditional machine learning and feature fusion, SVM, RF and BP neural network are used as the classification results of the classifier. For deep learning, the GoogLeNet, ResNet, and ResNeXt were implemented. The test results of the model on the test set show that the recognition accuracy of the proposed feature fusion method reaches (SVM: 85.18%; RF: 83.42%; BPNN: 85.18%), which is better than the traditional machine learning method (SVM: 80.17%; RF: 82.37%; BPNN: 84.12%) and the deep learning method (GoogLeNet: 82.54%; ResNet-18: 81.67%; ResNet-50: 81.67%; ResNeXt-50: 82.11%), which proves that this method has obvious advantages.This study provides a new strategy for the identification of precancerous gastric cancer, improving the efficiency and accuracy of precancerous gastric cancer identification, and hopes to provide substantial practical help for the identification of gastric precancerous diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
天天快乐应助义气飞机采纳,获得10
1秒前
科研通AI5应助一二采纳,获得10
2秒前
科研通AI5应助hyhyhyhy采纳,获得10
4秒前
夹竹桃完成签到,获得积分10
5秒前
领导范儿应助小森采纳,获得10
6秒前
kk发布了新的文献求助10
6秒前
敏感的向梦完成签到 ,获得积分20
6秒前
6秒前
crush_zyd完成签到,获得积分10
7秒前
7秒前
梁其杰完成签到,获得积分10
7秒前
雍雍完成签到 ,获得积分10
8秒前
dzdzn3完成签到 ,获得积分10
8秒前
小王完成签到,获得积分10
11秒前
Owen应助舒适的初雪采纳,获得10
11秒前
阔达紫青应助Robbins采纳,获得10
11秒前
Zhaoyuemeng发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
ddd完成签到,获得积分10
14秒前
kk完成签到,获得积分20
15秒前
NexusExplorer应助信仰采纳,获得10
16秒前
市井小民完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
mahehivebv111完成签到,获得积分10
18秒前
dzdzn完成签到 ,获得积分10
18秒前
大白牛完成签到,获得积分10
20秒前
SR完成签到,获得积分10
20秒前
21秒前
量子星尘发布了新的文献求助50
21秒前
xuanxuan完成签到,获得积分10
21秒前
Qing完成签到,获得积分10
22秒前
hyhyhyhy发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Treatise on Geochemistry (Third edition) 1600
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4710398
求助须知:如何正确求助?哪些是违规求助? 4075250
关于积分的说明 12601332
捐赠科研通 3777320
什么是DOI,文献DOI怎么找? 2086620
邀请新用户注册赠送积分活动 1113228
科研通“疑难数据库(出版商)”最低求助积分说明 990862