Automatic Inspection of Bridge Bolts Using Unmanned Aerial Vision and Adaptive Scale Unification-Based Deep Learning

人工智能 运动模糊 计算机科学 计算机视觉 去模糊 桥(图论) 像素 分割 机器视觉 预处理器 图像(数学) 图像处理 图像复原 医学 内科学
作者
Shang Jiang,Jian Zhang,Weiguo Wang,Yingjun Wang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (2): 328-328 被引量:14
标识
DOI:10.3390/rs15020328
摘要

Bolted connections are essential components that require regular inspection to ensure bridge safety. Existing methods mainly rely on traditional artificial vision-based inspection, which is inefficient due to the many bolts of bridges. A vision-based method using deep learning and unmanned aerial vision is proposed to automatically analyze the bridge bolts’ condition. The contributions are as follows: (1) Addressing the problems that motion blur often exists in videos captured by unmanned ariel systems (UASs) with high moving speed, and that bolt damage is hard to accurately detect due to the few pixels a single bolt occupies, a bolt image preprocessing method, including image deblurring based on inverse filtering with camera motion model and adaptive scaling based on super-resolution, is proposed to eliminate the motion blur of bolt images and segment them into subimages with uniform bolt size. (2) Addressing the problem that directly applying an object detection network for both bolt detection and classification may lead to the wrong identification of bolt damage, a two-stage detection method is proposed to divide bolt inspection into bolt object segmentation and damage classification. The proposed method was verified on an in-service bridge to detect bolts and classify them into normal bolts, corrosion bolts, and loose bolts. The results show that the proposed method can effectively eliminate the inherent defects of data acquired by UAS and accurately classify the bolt defects, verifying the practicability and high precision of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vaying发布了新的文献求助20
1秒前
凌桦惜余发布了新的文献求助10
1秒前
宫野珏发布了新的文献求助10
1秒前
1秒前
1秒前
科研通AI5应助无敌医学生采纳,获得10
1秒前
小蘑菇应助无敌医学生采纳,获得10
1秒前
1sss发布了新的文献求助10
1秒前
风吹而过关注了科研通微信公众号
1秒前
2秒前
2秒前
探索期完成签到,获得积分10
3秒前
3秒前
3秒前
chengwenyu发布了新的文献求助10
3秒前
爱睡午觉完成签到,获得积分10
4秒前
4秒前
4秒前
zyzhnu完成签到,获得积分10
4秒前
香蕉觅云应助宫野珏采纳,获得10
4秒前
5秒前
haoyunlai完成签到,获得积分10
5秒前
ZD完成签到 ,获得积分10
5秒前
科研通AI2S应助FloppyWow采纳,获得10
6秒前
Grayball完成签到,获得积分0
6秒前
MX应助研友_851KE8采纳,获得20
6秒前
windbroken发布了新的文献求助10
7秒前
科研通AI5应助12138采纳,获得10
7秒前
7秒前
Akim应助songf11采纳,获得10
8秒前
8秒前
8秒前
zho发布了新的文献求助10
8秒前
哎呀呀发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
情怀应助rubbertail采纳,获得10
10秒前
CipherSage应助羽翼采纳,获得10
10秒前
汉堡包应助阿士大夫采纳,获得10
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838071
求助须知:如何正确求助?哪些是违规求助? 3380330
关于积分的说明 10513807
捐赠科研通 3099923
什么是DOI,文献DOI怎么找? 1707265
邀请新用户注册赠送积分活动 821577
科研通“疑难数据库(出版商)”最低求助积分说明 772765