Automatic Inspection of Bridge Bolts Using Unmanned Aerial Vision and Adaptive Scale Unification-Based Deep Learning

人工智能 运动模糊 计算机科学 计算机视觉 去模糊 桥(图论) 像素 分割 机器视觉 预处理器 图像(数学) 图像处理 图像复原 医学 内科学
作者
Shang Jiang,Jian Zhang,Weiguo Wang,Yingjun Wang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (2): 328-328 被引量:14
标识
DOI:10.3390/rs15020328
摘要

Bolted connections are essential components that require regular inspection to ensure bridge safety. Existing methods mainly rely on traditional artificial vision-based inspection, which is inefficient due to the many bolts of bridges. A vision-based method using deep learning and unmanned aerial vision is proposed to automatically analyze the bridge bolts’ condition. The contributions are as follows: (1) Addressing the problems that motion blur often exists in videos captured by unmanned ariel systems (UASs) with high moving speed, and that bolt damage is hard to accurately detect due to the few pixels a single bolt occupies, a bolt image preprocessing method, including image deblurring based on inverse filtering with camera motion model and adaptive scaling based on super-resolution, is proposed to eliminate the motion blur of bolt images and segment them into subimages with uniform bolt size. (2) Addressing the problem that directly applying an object detection network for both bolt detection and classification may lead to the wrong identification of bolt damage, a two-stage detection method is proposed to divide bolt inspection into bolt object segmentation and damage classification. The proposed method was verified on an in-service bridge to detect bolts and classify them into normal bolts, corrosion bolts, and loose bolts. The results show that the proposed method can effectively eliminate the inherent defects of data acquired by UAS and accurately classify the bolt defects, verifying the practicability and high precision of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SunK1876完成签到,获得积分10
刚刚
1秒前
向晚完成签到,获得积分10
1秒前
wy.he应助han采纳,获得10
2秒前
偏偏海完成签到,获得积分10
2秒前
香蕉觅云应助spoon1026采纳,获得10
2秒前
马康辉完成签到,获得积分10
2秒前
就是梦而已完成签到,获得积分10
2秒前
Xzx1995完成签到 ,获得积分10
3秒前
weiv发布了新的文献求助10
3秒前
yl完成签到,获得积分10
4秒前
巴纳拉完成签到,获得积分10
4秒前
Jason完成签到 ,获得积分10
5秒前
星辰大海应助优雅的化蛹采纳,获得10
7秒前
收手吧大哥应助浅笑宝宝采纳,获得10
7秒前
Zer完成签到,获得积分10
8秒前
可靠笑翠发布了新的文献求助10
8秒前
9秒前
10秒前
情怀应助小恐龙采纳,获得10
10秒前
吃狗粮的猫完成签到 ,获得积分10
10秒前
12秒前
12秒前
xl发布了新的文献求助10
12秒前
qhy发布了新的文献求助10
13秒前
安静笑晴发布了新的文献求助30
14秒前
努力搞科研完成签到,获得积分10
14秒前
15秒前
jie发布了新的文献求助10
15秒前
Meow发布了新的文献求助10
16秒前
16秒前
畅快的柔完成签到,获得积分10
17秒前
17秒前
斯文败类应助kgf采纳,获得10
18秒前
sunshine完成签到,获得积分10
18秒前
收手吧大哥应助蓝色采纳,获得10
19秒前
Jasper应助coco采纳,获得10
19秒前
20秒前
20秒前
默默完成签到 ,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982424
求助须知:如何正确求助?哪些是违规求助? 3526056
关于积分的说明 11230222
捐赠科研通 3263911
什么是DOI,文献DOI怎么找? 1801722
邀请新用户注册赠送积分活动 879994
科研通“疑难数据库(出版商)”最低求助积分说明 807767