Multi-output displacement health monitoring model for concrete gravity dam in severely cold region based on clustering of measured dam temperature field

重力坝 稳健性(进化) 超参数 人工神经网络 支持向量机 聚类分析 计算机科学 流离失所(心理学) 多重共线性 数据挖掘 工程类 回归分析 机器学习 结构工程 有限元法 生物化学 化学 基因 心理学 心理治疗师
作者
Chongshi Gu,Mingyuan Zhu,Yan Wu,Bo Chen,Fuqiang Zhou,Weinan Chen
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (5): 3416-3436 被引量:16
标识
DOI:10.1177/14759217221142006
摘要

Constructing an accurate dam displacement health monitoring (DHM) model is crucial to ensure the safety of the dam. However, previous studies on DHM focused on the analysis and prediction of a single measurement point, with little work on multiple measurement points, which leads to low efficiency in evaluating the overall status of dams. Furthermore, the majority of these models are based on hydraulic engineering in moderate climatic areas, which results in low accuracy when applied to severely cold regions. To address these issues, the HT c T model is proposed based on full consideration of extreme climate and engineering measures in cold regions, which replaces the commonly used harmonic function or air temperature with the features extracted from the measured temperature field after clustering as a temperature factor. The method effectively overcomes multicollinearity while ensuring accuracy. Moreover, multi-output least-square support vector regression (MOLSSVR), a multi-output model that can forecast multiple measurement points simultaneously, is proposed. By combining it with the HT c T, the efficiency of the model is significantly improved. In addition, grey wolf optimization (GWO) is introduced to search for the optimal hyperparameters of the coupling model. The feasibility, accuracy, robustness, and long-term predictive capability of the proposed model are validated with measured displacements of a concrete gravity dam in a severely cold region. The results show that the proposed model outperforms the four popular machine learning (ML) models, including two support vector regression (SVR)-based models and two neural network-based models, which illustrate that the proposed model has outstanding accuracy and excellent long-term predictive capability. It provides an accurate and efficient novel approach for dam displacement safety monitoring in severely cold regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旧辞完成签到 ,获得积分10
刚刚
刚刚
pzh完成签到,获得积分10
刚刚
102755完成签到,获得积分10
1秒前
张博完成签到,获得积分10
1秒前
研友_LX66qZ完成签到,获得积分10
1秒前
Sweet完成签到,获得积分10
1秒前
1秒前
xiaobai完成签到,获得积分10
1秒前
博修发布了新的文献求助10
2秒前
雪霓裳发布了新的文献求助10
2秒前
2秒前
2秒前
哈拉斯发布了新的文献求助10
2秒前
科研通AI5应助清爽的老四采纳,获得10
2秒前
3秒前
赘婿应助六月采纳,获得10
3秒前
HMF发布了新的文献求助10
3秒前
什玖完成签到 ,获得积分10
4秒前
愉快的过客关注了科研通微信公众号
4秒前
Song0558发布了新的文献求助10
4秒前
ZhouYW应助jessie采纳,获得10
4秒前
123完成签到,获得积分10
4秒前
笑笑完成签到 ,获得积分10
4秒前
陈豆豆完成签到 ,获得积分10
5秒前
长情乘云发布了新的文献求助10
5秒前
yyyyxxxg完成签到,获得积分10
5秒前
仿若浮云完成签到,获得积分10
5秒前
胥阶英发布了新的文献求助10
6秒前
我是老大应助Gavin采纳,获得10
6秒前
奮斗发布了新的文献求助10
6秒前
张博发布了新的文献求助10
6秒前
wanci应助Kate采纳,获得10
6秒前
尤有完成签到,获得积分20
6秒前
深情安青应助牛油果果采纳,获得30
7秒前
求助完成签到,获得积分10
8秒前
逸龙完成签到,获得积分10
8秒前
9秒前
111发布了新的文献求助10
9秒前
冷艳的芯完成签到,获得积分10
9秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792936
求助须知:如何正确求助?哪些是违规求助? 3337536
关于积分的说明 10285691
捐赠科研通 3054189
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803846
科研通“疑难数据库(出版商)”最低求助积分说明 761578