R-YOLO: A Robust Object Detector in Adverse Weather

恶劣天气 稳健性(进化) 探测器 目标检测 预处理器 特征学习 计算机科学 深度学习 机器学习 模式识别(心理学) 计算机视觉 人工智能 气象学 电信 地理 生物化学 基因 化学
作者
Lucai Wang,Hongda Qin,Xuanyu Zhou,Xiao Lu,Fengting Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:29
标识
DOI:10.1109/tim.2022.3229717
摘要

Learning a robust object detector in adverse weather with real-time efficiency is of great importance for the visual perception task for autonomous driving systems. In this article, we propose a framework to improve the YOLO to a robust detector, denoted as R(obust)-YOLO, without the need for annotations in adverse weather. Considering the distribution gap between the normal weather images and the adverse weather images, our framework consists of an image quasi-translation network (QTNet) and a feature calibration network (FCNet) for adapting the normal weather domain to the adverse weather domain gradually. Specifically, we use the simple yet effective QTNet for generating images that inherit the annotations in the normal weather domain and interpolate the gap between the two domains. Then, in FCNet, we propose two kinds of adversarial-learning-based feature calibration modules to effectively align the feature representations in two domains in a local-to-global manner. With such a learning framework, our R-YOLO does not change the original YOLO structure, and thus it is applicable to all the YOLO-series detectors. Extensive experimental results of our R-YOLOv3, R-YOLOv5, and R-YOLOX on both the hazy and rainy datasets show that our method outperforms other detectors with dehaze/derain as the preprocessing step and other unsupervised domain adaptation (UDA)-based detectors, which confirms the effectiveness of our method on improving the robustness by only leveraging the unlabeled adverse weather images. Our code and pretrained models are available at: https://github.com/qinhongda8/R-YOLO .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后醉易发布了新的文献求助10
2秒前
xs发布了新的文献求助10
2秒前
爆米花应助经冰夏采纳,获得10
3秒前
qiao发布了新的文献求助10
3秒前
chezi完成签到,获得积分10
3秒前
3秒前
震动的曲奇完成签到,获得积分10
4秒前
李琛璐发布了新的文献求助10
6秒前
6秒前
9秒前
9秒前
在水一方应助modesty采纳,获得10
10秒前
qiao完成签到,获得积分10
10秒前
10秒前
林木森发布了新的文献求助20
11秒前
11秒前
12秒前
领导范儿应助骅暘采纳,获得10
13秒前
怕黑的擎发布了新的文献求助10
13秒前
Nancy发布了新的文献求助10
14秒前
Yun yun发布了新的文献求助10
14秒前
热情的纸飞机完成签到,获得积分20
14秒前
tovfix完成签到,获得积分10
16秒前
经冰夏发布了新的文献求助10
16秒前
bull9518发布了新的文献求助10
17秒前
宋芽芽u完成签到,获得积分10
17秒前
18秒前
19秒前
Yun yun完成签到,获得积分10
20秒前
wmk完成签到 ,获得积分10
20秒前
22秒前
modesty发布了新的文献求助10
22秒前
HHHH完成签到,获得积分10
23秒前
23秒前
清爽尔岚完成签到,获得积分20
24秒前
骅暘发布了新的文献求助10
25秒前
27秒前
27秒前
充电宝应助bull9518采纳,获得10
28秒前
米兰达完成签到 ,获得积分0
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332081
捐赠科研通 3063446
什么是DOI,文献DOI怎么找? 1681691
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763843