电解质
阴极
氧化还原
催化作用
溶解
化学
多硫化物
化学工程
电催化剂
硫黄
动力学
材料科学
无机化学
电极
电化学
物理化学
量子力学
物理
工程类
生物化学
有机化学
作者
Jiongwei Shan,Wei Wang,Bing Zhang,Xinying Wang,Weiliang Zhou,Liguo Yue,Yunyong Li
标识
DOI:10.1002/advs.202204192
摘要
Abstract Designing dense thick sulfur cathodes to gain high‐volumetric/areal‐capacity lithium–sulfur batteries (LSBs) in lean electrolytes is extremely desired. Nevertheless, the severe Li 2 S clogging and unclear mechanism seriously hinder its development. Herein, an integrated strategy is developed to manipulate Li 2 S redox kinetics of CoP/MXene catalyst via electron‐donor Cu doping. Meanwhile a dense S/Cu 0.1 Co 0.9 P/MXene cathode (density = 1.95 g cm −3 ) is constructed, which presents a large volumetric capacity of 1664 Ah L −1 (routine electrolyte) and a high areal capacity of ≈8.3 mAh cm −2 (lean electrolyte of 5.0 µL mg s −1 ) at 0.1 C. Systematical thermodynamics, kinetics, and theoretical simulation confirm that electron‐donor Cu doping induces the charge accumulation of Co atoms to form more chemical bonding with polysulfides, whereas weakens CoS bonding energy and generates abundant lattice vacancies and active sites to facilitate the diffusion and catalysis of polysulfides/Li 2 S on electrocatalyst surface, thereby decreasing the diffusion energy barrier and activation energy of Li 2 S nucleation and dissolution, boosting Li 2 S redox kinetics, and inhibiting shuttling in the dense thick sulfur cathode. This work deeply understands the atomic‐level manipulation mechanism of Li 2 S redox kinetics and provides dependable principles for designing high‐volumetric‐energy‐density, lean‐electrolyte LSBs through integrating bidirectional electro‐catalysts with manipulated Li 2 S redox and dense‐sulfur engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI