Streaking artifact reduction for CBCT‐based synthetic CT generation in adaptive radiotherapy

霍恩斯菲尔德秤 工件(错误) 裸奔 影像引导放射治疗 图像质量 计算机科学 人工智能 锥束ct 放射治疗计划 核医学 计算机视觉 医学 医学影像学 计算机断层摄影术 放射治疗 放射科 图像(数学) 病理
作者
Liugang Gao,Kai Xie,Jiawei Sun,Tao Lin,Jianfeng Sui,Guanyu Yang,Xinye Ni
出处
期刊:Medical Physics [Wiley]
卷期号:50 (2): 879-893 被引量:31
标识
DOI:10.1002/mp.16017
摘要

Abstract Background Cone‐beam computed tomography (CBCT) is widely used for daily image guidance in radiation therapy, enhancing the reproducibility of patient setup. However, its application in adaptive radiotherapy (ART) is limited by many imaging artifacts and inaccurate Hounsfield units (HUs). The correction of CBCT image is necessary and of great value for CBCT‐based ART. Purpose To explore the synthetic CT (sCT) generation from CBCT images of thorax and abdomen patients, which usually surfer from serious artifacts duo to organ state changes. In this study, a streaking artifact reduction network (SARN) is proposed to reduce artifacts and combine with cycleGAN to generate high‐quality sCT images from CBCT and achieve an accurate dose calculation. Methods The proposed SARN was trained in a self‐supervised manner. Artifact‐CT images were generated from planning CT by random deformation and projection replacement, and SARN was trained based on paired artifact—CT and CT images. The planning CT and CBCT images of 260 patients with cancer, including 120 thoracic and 140 abdominal CT scans, were used to train and evaluate neural networks. The CBCT images of another 12 patients in late treatment fractions, which contained large anatomy changes, were also tested by trained models. The trained models include commonly used U‐Net, cycleGAN, attention‐gated cycleGAN (cycAT), and cascade models combined SARN with cycleGAN or cycAT. The generated sCT images were compared in terms of image quality and dose calculation accuracy. Results The sCT images generated by SARN combined with cycleGAN and cycAT showed the best image quality, removed the most artifacts, and retained the normal anatomical structure. The SARN+cycleGAN performed best in streaking artifacts removal with the maximum percent integrity uniformity (PIU m ) of 91.0% and minimum standard deviation (SD) of 35.4 HU for delineated artifact regions among all models. The mean absolute error (MAE) of CBCT images in the thorax and abdomen were 71.6 and 55.2 HU, respectively, using planning CT images after deformable registration as ground truth. Compared with CBCT, the thoracic and abdominal sCT images generated by each model had significantly improved image quality with smaller MAE ( p < 0.05). The SARN+cycAT obtained the minimum MAEs of 42.5 HU in the thorax while SARN+cycleGAN got the minimum MAEs of 32.0 HU in the abdomen. The sCT generated by U‐Net had a remarkably lower anatomical structure accuracy compared with the other models. The thoracic and abdominal sCT images generated by SARN+cycleGAN showed optimal dose calculation accuracy with gamma passing rates (2 mm/2%) of 98.2% and 96.9%, respectively. Conclusions The proposed SARN can reduce serious streaking artifacts in CBCT images. The SARN combined with cycleGAN can generate high‐quality sCT images with fewer artifacts, high‐accuracy HU values, and accurate anatomical structures, thus providing reliable dose calculation in ART.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
任性的小刺猬完成签到,获得积分20
刚刚
从容的香菇完成签到,获得积分10
1秒前
无无发布了新的文献求助10
2秒前
xin关闭了xin文献求助
2秒前
脑洞疼应助火星上中蓝采纳,获得10
2秒前
shisui应助魏燃采纳,获得60
2秒前
2秒前
4秒前
4秒前
深情安青应助Natural采纳,获得10
5秒前
英姑应助温彬彬Mint_采纳,获得10
5秒前
明天剪纸完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
Asura完成签到,获得积分10
8秒前
8秒前
1Aaa发布了新的文献求助10
8秒前
9秒前
S.H.W完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
Akim应助小先生采纳,获得10
11秒前
orchid发布了新的文献求助10
12秒前
ddd应助毛钱采纳,获得10
12秒前
午午发布了新的文献求助30
13秒前
Akim应助相龙采纳,获得10
14秒前
张张的张发布了新的文献求助50
14秒前
FENGHUI发布了新的文献求助10
15秒前
15秒前
汉堡包应助结实惜灵采纳,获得10
15秒前
15秒前
16秒前
彧辰完成签到 ,获得积分10
17秒前
18秒前
正直凌文发布了新的文献求助10
18秒前
12关闭了12文献求助
19秒前
19秒前
大个应助WNing采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770876
求助须知:如何正确求助?哪些是违规求助? 5588215
关于积分的说明 15425761
捐赠科研通 4904256
什么是DOI,文献DOI怎么找? 2638647
邀请新用户注册赠送积分活动 1586521
关于科研通互助平台的介绍 1541641