Learning Discriminative Features for Crowd Counting

判别式 人工智能 计算机科学 卷积神经网络 特征(语言学) 模式识别(心理学) 特征学习 特征提取 计算机视觉 目标检测 特征向量 对象(语法) 像素 语言学 哲学
作者
Yuehai Chen,Qingzhong Wang,Jing Yang,Badong Chen,Haoyi Xiong,Shaoyi Du
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3749-3764 被引量:3
标识
DOI:10.1109/tip.2024.3408609
摘要

Crowd counting models in highly congested areas confront two main challenges: weak localization ability and difficulty in differentiating between foreground and background, leading to inaccurate estimations. The reason is that objects in highly congested areas are normally small and high-level features extracted by convolutional neural networks are less discriminative to represent small objects. To address these problems, we propose a learning discriminative features framework for crowd counting, which is composed of a masked feature prediction module (MPM) and a supervised pixel-level contrastive learning module (CLM). The MPM randomly masks feature vectors in the feature map and then reconstructs them, allowing the model to learn about what is present in the masked regions and improving the model's ability to localize objects in high-density regions. The CLM pulls targets close to each other and pushes them far away from background in the feature space, enabling the model to discriminate foreground objects from background. Additionally, the proposed modules can be beneficial in various computer vision tasks, such as crowd counting and object detection, where dense scenes or cluttered environments pose challenges to accurate localization. The proposed two modules are plug-and-play, incorporating the proposed modules into existing models can potentially boost their performance in these scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助吴子冰采纳,获得10
刚刚
苗条雁菱应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
1秒前
1秒前
英姑应助科研通管家采纳,获得10
1秒前
HEIKU应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
916应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
HEIKU应助科研通管家采纳,获得10
1秒前
osmanthus应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
916应助科研通管家采纳,获得10
2秒前
2秒前
小星星668完成签到,获得积分10
2秒前
科目三应助肘子杨采纳,获得10
2秒前
7秒前
8秒前
英俊的铭应助soul采纳,获得10
8秒前
执着的问兰完成签到,获得积分10
11秒前
害羞的衫应助香香采纳,获得10
12秒前
平淡凡柔发布了新的文献求助10
12秒前
陈晓迪1992完成签到,获得积分10
13秒前
13秒前
zzz完成签到,获得积分20
14秒前
fwsfs完成签到,获得积分10
14秒前
14秒前
肘子杨完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
积极平灵发布了新的文献求助10
17秒前
20秒前
大模型应助执着的问兰采纳,获得10
21秒前
Maren完成签到,获得积分10
21秒前
打打应助平淡凡柔采纳,获得10
21秒前
21秒前
GGBoy发布了新的文献求助10
24秒前
25秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864806
求助须知:如何正确求助?哪些是违规求助? 3407269
关于积分的说明 10653427
捐赠科研通 3131319
什么是DOI,文献DOI怎么找? 1726922
邀请新用户注册赠送积分活动 832100
科研通“疑难数据库(出版商)”最低求助积分说明 780127