Causal prior-embedded physics-informed neural networks and a case study on metformin transport in porous media

多孔介质 二甲双胍 人工神经网络 神经科学 多孔性 材料科学 计算机科学 医学 人工智能 心理学 内科学 复合材料 胰岛素
作者
Qiao Kang,Baiyu Zhang,Yiqi Cao,Xing Song,Xudong Ye,Xixi Li,Hongjing Wu,Yuanzhu Chen,Bing Chen
出处
期刊:Water Research [Elsevier]
卷期号:261: 121985-121985 被引量:3
标识
DOI:10.1016/j.watres.2024.121985
摘要

This study introduces a novel approach to transport modelling by integrating experimentally derived causal priors into neural networks. We illustrate this paradigm using a case study of metformin, a ubiquitous pharmaceutical emerging pollutant, and its transport behaviour in sandy media. Specifically, data from metformin's sandy column transport experiment was used to estimate unobservable parameters through a physics-based model Hydrus-1D, followed by a data augmentation to produce a more comprehensive dataset. A causal graph incorporating key variables was constructed, aiding in identifying impactful variables and estimating their causal dynamics or "causal prior." The causal priors extracted from the augmented dataset included underexplored system parameters such as the type-1 sorption fraction F, first-order reaction rate coefficient α, and transport system scale. Their moderate impact on the transport process has been quantitatively evaluated (normalized causal effect 0.0423, -0.1447 and -0.0351, respectively) with adequate confounders considered for the first time. The prior was later embedded into multilayer neural networks via two methods: causal weight initialization and causal prior regularization. Based on the results from AutoML hyperparameter tuning experiments, using two embedding methods simultaneously emerged as a more advantageous practice since our proposed causal weight initialization technique can enhance model stability, particularly when used in conjunction with causal prior regularization. amongst those experiments utilizing both techniques, the R-squared values peaked at 0.881. This study demonstrates a balanced approach between expert knowledge and data-driven methods, providing enhanced interpretability in black-box models such as neural networks for environmental modelling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王佳慧完成签到 ,获得积分10
10秒前
14秒前
14秒前
16秒前
文艺的青旋完成签到 ,获得积分10
17秒前
17秒前
Aulalala完成签到,获得积分10
18秒前
20秒前
李总要发财小苏发文章完成签到,获得积分10
20秒前
甜美阁发布了新的文献求助10
20秒前
大个应助H_C采纳,获得20
21秒前
小白完成签到 ,获得积分10
22秒前
核桃发布了新的文献求助10
25秒前
cc66完成签到 ,获得积分10
25秒前
隐形曼青应助昏睡的以南采纳,获得10
25秒前
饱满以松发布了新的文献求助10
27秒前
29秒前
十二月花开完成签到 ,获得积分10
32秒前
Hello应助Edou采纳,获得10
32秒前
34秒前
yhf完成签到,获得积分20
35秒前
hdc12138完成签到,获得积分10
36秒前
40秒前
Edou发布了新的文献求助10
44秒前
yhf关注了科研通微信公众号
48秒前
49秒前
自由莺完成签到 ,获得积分10
50秒前
orange完成签到 ,获得积分10
50秒前
酷奔发布了新的文献求助10
52秒前
55秒前
55秒前
陈浩南xy完成签到,获得积分10
59秒前
xcl完成签到,获得积分10
1分钟前
法外潮湿宝贝完成签到 ,获得积分10
1分钟前
1分钟前
胡萝卜完成签到,获得积分10
1分钟前
1分钟前
开朗如猪猪完成签到 ,获得积分10
1分钟前
小娄娄娄发布了新的文献求助10
1分钟前
天阳发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5862523
求助须知:如何正确求助?哪些是违规求助? 6382210
关于积分的说明 15646226
捐赠科研通 4976082
什么是DOI,文献DOI怎么找? 2684446
邀请新用户注册赠送积分活动 1627695
关于科研通互助平台的介绍 1585293