Causal prior-embedded physics-informed neural networks and a case study on metformin transport in porous media

多孔介质 二甲双胍 人工神经网络 神经科学 多孔性 材料科学 计算机科学 医学 人工智能 心理学 内科学 复合材料 胰岛素
作者
Qiao Kang,Baiyu Zhang,Yiqi Cao,Xing Song,Xudong Ye,Xixi Li,Hongjing Wu,Yuanzhu Chen,Bing Chen
出处
期刊:Water Research [Elsevier]
卷期号:261: 121985-121985 被引量:3
标识
DOI:10.1016/j.watres.2024.121985
摘要

This study introduces a novel approach to transport modelling by integrating experimentally derived causal priors into neural networks. We illustrate this paradigm using a case study of metformin, a ubiquitous pharmaceutical emerging pollutant, and its transport behaviour in sandy media. Specifically, data from metformin's sandy column transport experiment was used to estimate unobservable parameters through a physics-based model Hydrus-1D, followed by a data augmentation to produce a more comprehensive dataset. A causal graph incorporating key variables was constructed, aiding in identifying impactful variables and estimating their causal dynamics or "causal prior." The causal priors extracted from the augmented dataset included underexplored system parameters such as the type-1 sorption fraction F, first-order reaction rate coefficient α, and transport system scale. Their moderate impact on the transport process has been quantitatively evaluated (normalized causal effect 0.0423, -0.1447 and -0.0351, respectively) with adequate confounders considered for the first time. The prior was later embedded into multilayer neural networks via two methods: causal weight initialization and causal prior regularization. Based on the results from AutoML hyperparameter tuning experiments, using two embedding methods simultaneously emerged as a more advantageous practice since our proposed causal weight initialization technique can enhance model stability, particularly when used in conjunction with causal prior regularization. amongst those experiments utilizing both techniques, the R-squared values peaked at 0.881. This study demonstrates a balanced approach between expert knowledge and data-driven methods, providing enhanced interpretability in black-box models such as neural networks for environmental modelling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李嘉诚发布了新的文献求助10
1秒前
热心市民完成签到 ,获得积分10
2秒前
木风完成签到,获得积分10
2秒前
难过的溪流完成签到 ,获得积分10
3秒前
阔达的秀发完成签到,获得积分10
4秒前
4秒前
4秒前
今天也要开心Y完成签到,获得积分10
4秒前
无际的星空下完成签到,获得积分10
5秒前
gaoqg完成签到,获得积分10
6秒前
谢黎发布了新的文献求助10
7秒前
小马甲应助jovrtic采纳,获得10
7秒前
9秒前
twwm发布了新的文献求助10
9秒前
9秒前
本是个江湖散人完成签到,获得积分10
10秒前
风笛完成签到 ,获得积分10
11秒前
serena0_0发布了新的文献求助10
13秒前
还行啊完成签到,获得积分10
13秒前
arniu2008发布了新的文献求助10
13秒前
xuan完成签到,获得积分10
14秒前
树妖三三完成签到,获得积分10
15秒前
17秒前
我刚上小学完成签到,获得积分10
18秒前
21秒前
23秒前
迪仔完成签到 ,获得积分10
23秒前
香蕉觅云应助清风采纳,获得10
24秒前
25秒前
宋子虎完成签到 ,获得积分10
29秒前
缥莲完成签到,获得积分10
29秒前
Wanyeweiyu完成签到,获得积分10
30秒前
顺利毕业完成签到 ,获得积分10
30秒前
30秒前
Jenny完成签到 ,获得积分10
32秒前
研友_Zeg4xL完成签到,获得积分10
33秒前
克林发布了新的文献求助30
34秒前
67号完成签到 ,获得积分10
34秒前
Zhuzhu完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603540
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14854271
捐赠科研通 4693471
什么是DOI,文献DOI怎么找? 2540831
邀请新用户注册赠送积分活动 1507052
关于科研通互助平台的介绍 1471806