How Good are Current Pocket-Based 3D Generative Models?: The Benchmark Set and Evaluation of Protein Pocket-Based 3D Molecular Generative Models

水准点(测量) 生成语法 集合(抽象数据类型) 计算机科学 生成模型 约束(计算机辅助设计) 机器学习 人工智能 工程类 程序设计语言 地理 大地测量学 机械工程
作者
Haoyang Liu,Yifei Qin,Zhangming Niu,Mingyuan Xu,Jia‐Qiang Wu,Xianglu Xiao,Jinping Lei,Ting Ran,Hongming Chen
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:4
标识
DOI:10.1021/acs.jcim.4c01598
摘要

The development of a three-dimensional (3D) molecular generative model based on protein pockets has recently attracted a lot of attention. This type of model aims to achieve the simultaneous generation of molecular graphs and 3D binding conformation under the constraint of protein binding. Various pocket-based generative models have been proposed; however, currently, there is a lack of systematic and objective evaluation metrics for these models. To address this issue, a comprehensive benchmark data set, named POKMOL-3D, is proposed to evaluate protein pocket-based 3D molecular generative models. It includes 32 protein targets together with their known active compounds as a test set to evaluate the versatility of generation models to mimic the real-world scenario. Additionally, a series of two-dimensional (2D) and 3D evaluation metrics with some newly created ones was integrated to assess the quality of generated molecular structures and their binding conformations. It is expected that this work can enhance our comprehension of the effectiveness and weakness of current 3D generative models and stimulate the discussion on challenges and useful guidance for developing the next wave of molecular generative models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
重要忆秋完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
深情冷雪发布了新的文献求助10
4秒前
chao完成签到,获得积分20
6秒前
8秒前
10秒前
原野发布了新的文献求助20
10秒前
13秒前
甜甜衣兜发布了新的文献求助10
13秒前
苏鱼发布了新的文献求助20
14秒前
在水一方应助zhvjdb采纳,获得10
15秒前
曲奇不甜发布了新的文献求助10
16秒前
19秒前
chaoli完成签到,获得积分10
22秒前
22秒前
科研民工_郭完成签到,获得积分10
23秒前
大力盼曼完成签到,获得积分10
24秒前
肆月完成签到 ,获得积分10
24秒前
彭于晏应助花花采纳,获得10
26秒前
26秒前
火星上采梦完成签到,获得积分10
28秒前
zhvjdb发布了新的文献求助10
28秒前
闾丘志泽发布了新的文献求助10
29秒前
情怀应助小杨采纳,获得10
32秒前
天意如此应助直率翠绿采纳,获得10
33秒前
zhvjdb完成签到,获得积分10
34秒前
CodeCraft应助LJJ采纳,获得10
36秒前
39秒前
43秒前
花玥鹿完成签到,获得积分10
44秒前
44秒前
47秒前
fwh发布了新的文献求助10
49秒前
sun_lin发布了新的文献求助10
49秒前
hh发布了新的文献求助10
50秒前
52秒前
LJJ发布了新的文献求助10
52秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942531
求助须知:如何正确求助?哪些是违规求助? 3487798
关于积分的说明 11045374
捐赠科研通 3218309
什么是DOI,文献DOI怎么找? 1778812
邀请新用户注册赠送积分活动 864442
科研通“疑难数据库(出版商)”最低求助积分说明 799483