FTA-Net: Frequency-Temporal-Aware Network for Remote Sensing Change Detection

计算机科学 遥感 变更检测 人工智能 地质学
作者
Tingting Zhu,Zikai Zhao,Min Xia,Junqing Huang,Liguo Weng,Kai Hu,Haifeng Lin,Wenyu Zhao
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:11
标识
DOI:10.1109/jstars.2025.3525595
摘要

Change detection (CD) aims to explore surface changes in co-aligned image pairs. However, many existing networks primarily focus on learning deep features, without considering the impact of attention and fusion strategies on detection performance. Therefore, a new Frequency-Temporal-Aware Network (FTA-Net) is proposed, it recognizes changes by means of a frequency-domain temporal fusion module and supervised attention to multilevel time-difference features, while reducing the model size. Frequency Temporal Fusion Module is designed to introduce the frequency attention mechanism into the fusion process. First, it has a two-branch Transformer-INN feature extractor using a Lite-Transformer that utilizes remote attention for low-frequency global features, and a Invertible Neural Network that focuses on extracting high-frequency local information. The semantic information and details of the object in both highfrequency and low-frequency feature maps are further strengthened by fusing the high-frequency local features and low-frequency global representations. Then, a Stepwise Modification Detection Module is proposed to better extract temporal difference information from bitemporal features. In addition, a Supervised Learning Module is constructed to re-weight features to efficiently aggregate multi-level features from highlevel to low-level. FTA-Net outperforms state-of-theart methods on three challenging CD datasets, and it have fewer parameters (4.93 M) and lower computational cost (6.71 G). Our code is available at https://github.com/Ztjdsb/FTA-Net
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAAAA发布了新的文献求助10
刚刚
1秒前
somnus_fu发布了新的文献求助10
1秒前
禹宛白发布了新的文献求助10
1秒前
卞卞发布了新的文献求助10
1秒前
青青发布了新的文献求助10
1秒前
杰_骜不驯完成签到,获得积分10
1秒前
健忘的哈密瓜完成签到,获得积分10
2秒前
阳佟之槐完成签到,获得积分10
2秒前
华仔应助如意秋珊采纳,获得10
2秒前
Y_Z发布了新的文献求助30
2秒前
3秒前
4秒前
L112233发布了新的文献求助10
4秒前
exy完成签到,获得积分10
4秒前
sci完成签到,获得积分10
4秒前
神勇的天问完成签到,获得积分10
4秒前
阳佟之槐发布了新的文献求助10
5秒前
5秒前
JavedAli完成签到,获得积分10
5秒前
sfsfdfgr发布了新的文献求助10
6秒前
li完成签到,获得积分20
6秒前
6秒前
6秒前
Jasper应助dk0dk0dk0采纳,获得10
6秒前
123完成签到,获得积分10
7秒前
white发布了新的文献求助30
7秒前
7秒前
陈婷婷完成签到,获得积分10
7秒前
跳跃毒娘发布了新的文献求助200
7秒前
8秒前
8秒前
8秒前
suntee发布了新的文献求助10
8秒前
任驰骋发布了新的文献求助10
8秒前
9秒前
科研小白完成签到,获得积分10
9秒前
核桃发布了新的文献求助10
9秒前
KEYAN完成签到,获得积分10
9秒前
苏幕发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Further Studies on the Gold-Catalyzed Oxidative Domino Cyclization/Cycloaddition to Give Polyfunctional Tetracycles 400
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4298297
求助须知:如何正确求助?哪些是违规求助? 3823662
关于积分的说明 11970410
捐赠科研通 3465295
什么是DOI,文献DOI怎么找? 1900614
邀请新用户注册赠送积分活动 948500
科研通“疑难数据库(出版商)”最低求助积分说明 850857