已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multilayer Brain Networks for Enhanced Decoding of Natural Hand Movements and Kinematic Parameters

运动学 解码方法 自然(考古学) 计算机科学 神经假体 人工智能 人机交互 神经科学 心理学 电信 物理 地质学 经典力学 古生物学
作者
Zelin Gao,Baoguo Xu,Xin Wang,Wenbin Zhang,Jingyu Ping,Huijun Li,Aiguo Song
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/tbme.2024.3519348
摘要

Decoding natural hand movements using Movement-Related Cortical Potentials (MRCPs) features is crucial for the natural control of neuroprosthetics. However, current research has primarily focused on the characteristics of individual channels or on brain networks within a single frequency or time segment, overlooking the potential of brain networks across multiple time-frequency domains. To address this problem, our study investigates the application of multilayer brain networks (MBNs) in decoding natural hand movements and kinematic parameters, using a combination of MRCPs features and MBNs metrics. Based on grasp taxonomy, we selected four natural movements for our study: Large Diameter (LD), Sphere 3-Finger (SF), Precision Disk (PD), and Parallel Extension (PE), each incorporating two levels of speed and force parameters. The results demonstrate that a combination of MRCPs features and MBNs metrics can successfully decode not only the types of movements and kinematic parameters but also differentiate between different grasp taxonomy characteristics, such as the number of fingers exerting force and the type of grasp. In terms of movement type, we achieved a peak four-class accuracy of 60.56%. For grasp type and number of fingers exerting force, binary classification peak accuracies reached 79.25% and 79.28%, respectively. In the case of kinematic parameters, the Precision Disk movement exhibited the highest binary classification peak accuracy at 84.65%. Moreover, our research also found the changes and patterns in brain region connectivity across both time and frequency domains. We believe that our research highlights the potential of MBNs to enhance the functionality of Brain-Computer Interface (BCI) systems for more intuitive control mechanisms and contributes valuable insights into the brain's operational mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助Bbsheep采纳,获得10
刚刚
星空完成签到 ,获得积分10
1秒前
mrwill发布了新的文献求助10
2秒前
milk完成签到 ,获得积分10
3秒前
peanut完成签到 ,获得积分10
3秒前
阳光萌萌完成签到,获得积分10
4秒前
6秒前
拣尽南枝完成签到 ,获得积分10
7秒前
LYNN完成签到,获得积分10
8秒前
nina完成签到 ,获得积分10
9秒前
博修发布了新的文献求助10
11秒前
小鲤鱼本鱼完成签到,获得积分10
12秒前
13秒前
15秒前
一一发布了新的文献求助10
16秒前
桀桀完成签到 ,获得积分10
16秒前
南枝完成签到 ,获得积分10
16秒前
王冰洁完成签到,获得积分10
17秒前
17秒前
想吃芝士荔枝烤鱼完成签到,获得积分10
18秒前
科研通AI5应助博修采纳,获得10
19秒前
天天快乐应助暂无采纳,获得30
20秒前
无聊的老姆完成签到 ,获得积分10
20秒前
涵陌瑌发布了新的文献求助10
21秒前
科研通AI5应助小李吃梨采纳,获得10
21秒前
罗明芳完成签到 ,获得积分10
25秒前
wang666完成签到 ,获得积分10
27秒前
小王完成签到,获得积分10
27秒前
小白完成签到 ,获得积分10
28秒前
暂无给暂无的求助进行了留言
29秒前
八段锦发布了新的文献求助10
35秒前
隐形曼青应助涵陌瑌采纳,获得10
36秒前
36秒前
36秒前
37秒前
38秒前
文艺鞋垫完成签到,获得积分10
41秒前
aura完成签到 ,获得积分10
41秒前
wenqin发布了新的文献求助30
41秒前
博修发布了新的文献求助10
43秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800806
求助须知:如何正确求助?哪些是违规求助? 3346337
关于积分的说明 10328913
捐赠科研通 3062761
什么是DOI,文献DOI怎么找? 1681193
邀请新用户注册赠送积分活动 807402
科研通“疑难数据库(出版商)”最低求助积分说明 763691