Hybrid Action Based Reinforcement Learning for Multi-Objective Compatible Autonomous Driving

强化学习 动作(物理) 钢筋 计算机科学 人工智能 心理学 社会心理学 物理 量子力学
作者
Gang Jin,Zhuoren Li,Bo Leng,Wei Han,Lu Xiong,Chen Sun
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2501.08096
摘要

Reinforcement Learning (RL) has shown excellent performance in solving decision-making and control problems of autonomous driving, which is increasingly applied in diverse driving scenarios. However, driving is a multi-attribute problem, leading to challenges in achieving multi-objective compatibility for current RL methods, especially in both policy execution and policy iteration. On the one hand, the common action space structure with single action type limits driving flexibility or results in large behavior fluctuations during policy execution. On the other hand, the multi-attribute weighted single reward function result in the agent's disproportionate attention to certain objectives during policy iterations. To this end, we propose a Multi-objective Ensemble-Critic reinforcement learning method with Hybrid Parametrized Action for multi-objective compatible autonomous driving. Specifically, a parameterized action space is constructed to generate hybrid driving actions, combining both abstract guidance and concrete control commands. A multi-objective critics architecture is constructed considering multiple attribute rewards, to ensure simultaneously focusing on different driving objectives. Additionally, uncertainty-based exploration strategy is introduced to help the agent faster approach viable driving policy. The experimental results in both the simulated traffic environment and the HighD dataset demonstrate that our method can achieve multi-objective compatible autonomous driving in terms of driving efficiency, action consistency, and safety. It enhances the general performance of the driving while significantly increasing training efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
王萍发布了新的文献求助10
6秒前
Ling完成签到,获得积分20
7秒前
lllll发布了新的文献求助10
8秒前
9秒前
9秒前
12秒前
law发布了新的文献求助10
12秒前
Joy完成签到,获得积分10
13秒前
菜菜泽完成签到,获得积分10
13秒前
稀尔完成签到,获得积分10
13秒前
14秒前
18秒前
叫我Le哥完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
椰冻完成签到,获得积分10
22秒前
miracle发布了新的文献求助10
23秒前
所所应助博修采纳,获得10
23秒前
wanci应助科研通管家采纳,获得10
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
SciGPT应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
24秒前
24秒前
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
28秒前
29秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965102
求助须知:如何正确求助?哪些是违规求助? 3510413
关于积分的说明 11153181
捐赠科研通 3244755
什么是DOI,文献DOI怎么找? 1792578
邀请新用户注册赠送积分活动 873923
科研通“疑难数据库(出版商)”最低求助积分说明 804024