Hybrid Action Based Reinforcement Learning for Multi-Objective Compatible Autonomous Driving

强化学习 动作(物理) 钢筋 计算机科学 人工智能 心理学 社会心理学 物理 量子力学
作者
Gang Jin,Zhuoren Li,Bo Leng,Wei Han,Lu Xiong,Chen Sun
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2501.08096
摘要

Reinforcement Learning (RL) has shown excellent performance in solving decision-making and control problems of autonomous driving, which is increasingly applied in diverse driving scenarios. However, driving is a multi-attribute problem, leading to challenges in achieving multi-objective compatibility for current RL methods, especially in both policy execution and policy iteration. On the one hand, the common action space structure with single action type limits driving flexibility or results in large behavior fluctuations during policy execution. On the other hand, the multi-attribute weighted single reward function result in the agent's disproportionate attention to certain objectives during policy iterations. To this end, we propose a Multi-objective Ensemble-Critic reinforcement learning method with Hybrid Parametrized Action for multi-objective compatible autonomous driving. Specifically, a parameterized action space is constructed to generate hybrid driving actions, combining both abstract guidance and concrete control commands. A multi-objective critics architecture is constructed considering multiple attribute rewards, to ensure simultaneously focusing on different driving objectives. Additionally, uncertainty-based exploration strategy is introduced to help the agent faster approach viable driving policy. The experimental results in both the simulated traffic environment and the HighD dataset demonstrate that our method can achieve multi-objective compatible autonomous driving in terms of driving efficiency, action consistency, and safety. It enhances the general performance of the driving while significantly increasing training efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
maizencrna发布了新的文献求助10
1秒前
韶卿完成签到,获得积分10
1秒前
ANNNNN发布了新的文献求助20
2秒前
安静爆米花完成签到,获得积分10
2秒前
冷傲迎梦发布了新的文献求助10
2秒前
3秒前
3秒前
橙子关注了科研通微信公众号
3秒前
生物狗发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
隐形曼青应助方班术采纳,获得10
4秒前
张超发布了新的文献求助10
5秒前
5秒前
zzzzzzzzzzzz发布了新的文献求助10
5秒前
邢鲁宁发布了新的文献求助30
5秒前
研友_VZG7GZ应助15256397832采纳,获得10
5秒前
pcr163应助Thunnus001采纳,获得50
5秒前
心晴发布了新的文献求助10
6秒前
澈哩完成签到,获得积分10
6秒前
6秒前
jochimchan完成签到,获得积分10
6秒前
Sean发布了新的文献求助10
7秒前
li发布了新的文献求助10
7秒前
7秒前
科研通AI5应助daihq3采纳,获得10
7秒前
笑点低的秋蝶完成签到,获得积分10
8秒前
kkx发布了新的文献求助10
8秒前
楼一笑发布了新的文献求助30
8秒前
8秒前
252525发布了新的文献求助10
8秒前
CodeCraft应助罗杰采纳,获得10
8秒前
小怪兽完成签到,获得积分10
9秒前
小明完成签到,获得积分10
9秒前
gao发布了新的文献求助10
9秒前
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786796
求助须知:如何正确求助?哪些是违规求助? 3332500
关于积分的说明 10255917
捐赠科研通 3047766
什么是DOI,文献DOI怎么找? 1672704
邀请新用户注册赠送积分活动 801534
科研通“疑难数据库(出版商)”最低求助积分说明 760257