VDMUFusion: A Versatile Diffusion Model-Based Unsupervised Framework for Image Fusion

计算机科学 图像融合 人工智能 图像处理 计算机视觉 图像(数学) 扩散 模式识别(心理学) 物理 热力学
作者
Yu Shi,Yü Liu,Juan Cheng,Z. Jane Wang,Xun Chen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 441-454 被引量:13
标识
DOI:10.1109/tip.2024.3512365
摘要

Image fusion facilitates the integration of information from various source images of the same scene into a composite image, thereby benefiting perception, analysis, and understanding. Recently, diffusion models have demonstrated impressive generative capabilities in the field of computer vision, suggesting significant potential for application in image fusion. The forward process in the diffusion models requires the gradual addition of noise to the original data. However, typical unsupervised image fusion tasks (e.g., infrared-visible, medical, and multi-exposure image fusion) lack ground truth images (corresponding to the original data in diffusion models), thereby preventing the direct application of the diffusion models. To address this problem, we propose a versatile diffusion model-based unsupervised framework for image fusion, termed as VDMUFusion. In the proposed method, we integrate the fusion problem into the diffusion sampling process by formulating image fusion as a weighted average process and establishing appropriate assumptions about the noise in the diffusion model. To simplify the training process, we propose a multi-task learning framework that replaces the original noise prediction network, allowing for simultaneous prediction of noise and fusion weights. Meanwhile, our method employs joint training across various fusion tasks, which significantly improves noise prediction accuracy and yields higher quality fused images compared to training on a single task. Extensive experimental results demonstrate that the proposed method delivers very competitive performance across various image fusion tasks. The code is available at https://github.com/yuliu316316/VDMUFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nichols完成签到,获得积分10
2秒前
zhaop发布了新的文献求助10
3秒前
姜昕发布了新的文献求助10
4秒前
4秒前
5秒前
小粉红wow~~~完成签到,获得积分10
6秒前
Moonber完成签到,获得积分10
6秒前
六七关注了科研通微信公众号
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
鹿小鲸发布了新的文献求助10
9秒前
胖胖完成签到 ,获得积分10
9秒前
9秒前
10秒前
linlin完成签到,获得积分10
10秒前
11秒前
大个应助圈儿采纳,获得10
12秒前
12秒前
馅饼完成签到,获得积分10
13秒前
沫沫发布了新的文献求助10
13秒前
所所应助xiaoxuey采纳,获得10
13秒前
13秒前
斯文一笑发布了新的文献求助10
13秒前
14秒前
adkins发布了新的文献求助10
15秒前
刘慕瑶发布了新的文献求助10
15秒前
苏澄完成签到 ,获得积分10
16秒前
Canc_Guo关注了科研通微信公众号
18秒前
腾腾发布了新的文献求助10
18秒前
赘婿应助苯环羟基采纳,获得10
18秒前
20秒前
余鱼鱼完成签到,获得积分10
20秒前
科研通AI6应助adkins采纳,获得10
21秒前
Jin完成签到,获得积分10
21秒前
飘逸的芮完成签到 ,获得积分10
21秒前
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
从容芮应助科研通管家采纳,获得30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075983
求助须知:如何正确求助?哪些是违规求助? 4295640
关于积分的说明 13385047
捐赠科研通 4117410
什么是DOI,文献DOI怎么找? 2254869
邀请新用户注册赠送积分活动 1259467
关于科研通互助平台的介绍 1192218