Advancements in Nanobody Epitope Prediction: A Comparative Study of AlphaFold2Multimer vs AlphaFold3

表位 计算生物学 计算机科学 人工智能 抗体 医学 生物 免疫学
作者
Floriane Eshak,Anne Lamy
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:4
标识
DOI:10.1021/acs.jcim.4c01877
摘要

Nanobodies have emerged as a versatile class of biologics with promising therapeutic applications, driving the need for robust tools to predict their epitopes, a critical step for in silico affinity maturation and epitope-targeted design. While molecular docking has long been employed for epitope identification, it requires substantial expertise. With the advent of AI driven tools, epitope identification has become more accessible to a broader community increasing the risk of models' misinterpretation. In this study, we critically evaluate the nanobody epitope prediction performance of two leading models: AlphaFold3 and AlphaFold2-Multimer (v.2.3.2), highlighting their strengths and limitations. Our analysis revealed that the overall success rate remains below 50% for both tools, with AlphaFold3 achieving a modest overall improvement. Interestingly, a significant improvement in AlphaFold3's performance was observed within a specific nanobody class. To address this discrepancy, we explored factors influencing epitope identification, demonstrating that accuracy heavily depends on CDR3 characteristics, such as its 3D spatial conformation and length, which drive binding interactions with the antigen. Additionally, we assessed the robustness of AlphaFold3's confidence metrics, highlighting their potential for broader applications. Finally, we evaluated different strategies aimed at improving the prediction success rate. This study can be extended to assess the accuracy of emerging deep learning models adopting an approach similar to that of AlphaFold3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
jie结发布了新的文献求助10
刚刚
1秒前
dierda完成签到,获得积分10
1秒前
东方元语发布了新的文献求助10
1秒前
zhubin发布了新的文献求助10
1秒前
1秒前
hygge完成签到 ,获得积分10
1秒前
2秒前
三三四发布了新的文献求助10
2秒前
任驰骋发布了新的文献求助10
2秒前
slm3097688537发布了新的文献求助20
3秒前
pluto应助LL采纳,获得10
3秒前
将子昆发布了新的文献求助10
3秒前
3秒前
沉默夜云完成签到,获得积分10
4秒前
huahua发布了新的文献求助10
4秒前
陈七七完成签到,获得积分10
4秒前
李园长发布了新的文献求助10
4秒前
Jared应助李雨泽采纳,获得10
4秒前
思源应助帅气蓝采纳,获得10
4秒前
wyt发布了新的文献求助10
4秒前
junhuihe发布了新的文献求助10
4秒前
dierda发布了新的文献求助10
4秒前
4秒前
paipai完成签到,获得积分10
5秒前
fabea完成签到,获得积分10
6秒前
6秒前
我是老大应助张志迪采纳,获得10
6秒前
yao应助张志迪采纳,获得10
6秒前
所所应助bashideyy采纳,获得10
6秒前
6秒前
NexusExplorer应助张志迪采纳,获得10
6秒前
科研通AI6应助张志迪采纳,获得10
6秒前
852应助张志迪采纳,获得10
6秒前
Harry应助张志迪采纳,获得10
6秒前
6秒前
科目三应助Angelina采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526379
求助须知:如何正确求助?哪些是违规求助? 4616552
关于积分的说明 14554107
捐赠科研通 4554702
什么是DOI,文献DOI怎么找? 2496037
邀请新用户注册赠送积分活动 1476414
关于科研通互助平台的介绍 1448010