Advancements in Nanobody Epitope Prediction: A Comparative Study of AlphaFold2Multimer vs AlphaFold3

表位 计算生物学 计算机科学 人工智能 抗体 医学 生物 免疫学
作者
Floriane Eshak,Anne Lamy
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:4
标识
DOI:10.1021/acs.jcim.4c01877
摘要

Nanobodies have emerged as a versatile class of biologics with promising therapeutic applications, driving the need for robust tools to predict their epitopes, a critical step for in silico affinity maturation and epitope-targeted design. While molecular docking has long been employed for epitope identification, it requires substantial expertise. With the advent of AI driven tools, epitope identification has become more accessible to a broader community increasing the risk of models' misinterpretation. In this study, we critically evaluate the nanobody epitope prediction performance of two leading models: AlphaFold3 and AlphaFold2-Multimer (v.2.3.2), highlighting their strengths and limitations. Our analysis revealed that the overall success rate remains below 50% for both tools, with AlphaFold3 achieving a modest overall improvement. Interestingly, a significant improvement in AlphaFold3's performance was observed within a specific nanobody class. To address this discrepancy, we explored factors influencing epitope identification, demonstrating that accuracy heavily depends on CDR3 characteristics, such as its 3D spatial conformation and length, which drive binding interactions with the antigen. Additionally, we assessed the robustness of AlphaFold3's confidence metrics, highlighting their potential for broader applications. Finally, we evaluated different strategies aimed at improving the prediction success rate. This study can be extended to assess the accuracy of emerging deep learning models adopting an approach similar to that of AlphaFold3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千万发布了新的文献求助10
1秒前
科研通AI6应助凡迪亚比采纳,获得20
1秒前
无可无不可完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
whatever发布了新的文献求助50
3秒前
renee_yok完成签到 ,获得积分10
3秒前
精明一寡发布了新的文献求助10
3秒前
周全敏给周全敏的求助进行了留言
3秒前
虚心的不二完成签到 ,获得积分10
5秒前
害羞的蓝色耶耶完成签到,获得积分10
5秒前
改革后持股完成签到,获得积分10
6秒前
来日昭昭完成签到,获得积分10
6秒前
7秒前
瘦瘦的荧完成签到,获得积分20
8秒前
XDS发布了新的文献求助10
8秒前
9秒前
aa发布了新的文献求助10
10秒前
星辰大海应助Ethon采纳,获得10
11秒前
11秒前
瘦瘦的荧发布了新的文献求助10
12秒前
如意涵雁完成签到,获得积分10
12秒前
dddd发布了新的文献求助10
12秒前
12秒前
祖三问完成签到 ,获得积分10
13秒前
脑洞疼应助小王子采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
uulli完成签到,获得积分10
15秒前
15秒前
风清扬应助称心的蛟凤采纳,获得200
15秒前
Akim应助dddd采纳,获得10
16秒前
16秒前
16秒前
17秒前
guo应助min9yu采纳,获得30
17秒前
海岢完成签到,获得积分10
17秒前
Jerry完成签到,获得积分10
18秒前
ww发布了新的文献求助10
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4232335
求助须知:如何正确求助?哪些是违规求助? 3765597
关于积分的说明 11831689
捐赠科研通 3424453
什么是DOI,文献DOI怎么找? 1879213
邀请新用户注册赠送积分活动 932157
科研通“疑难数据库(出版商)”最低求助积分说明 839470