Prediction of metabolic syndrome: A machine learning approach to help primary prevention

逻辑回归 医学 梯度升压 Boosting(机器学习) 线性判别分析 代谢综合征 机器学习 人工智能 随机森林 内科学 计算机科学 肥胖
作者
Leonardo Daniel Tavares,Andre Manoel,Thiago Henrique Rizzi Donato,Fernando Yue Cesena,Carlos André Minanni,Nea Miwa Kashiwagi,Lívia Paiva da Silva,Edson Amaro,Cláudia Szlejf
出处
期刊:Diabetes Research and Clinical Practice [Elsevier]
卷期号:191: 110047-110047 被引量:24
标识
DOI:10.1016/j.diabres.2022.110047
摘要

To describe the performance of machine learning (ML) applied to predict future metabolic syndrome (MS), and to estimate lifestyle changes effects in MS predictions.We analyzed data from 17,182 adults attending a checkup program sequentially (37,999 visit pairs) over 17 years. Variables on sociodemographic attributes, clinical, laboratory, and lifestyle characteristics were used to develop ML models to predict MS [logistic regression, linear discriminant analysis, k-nearest neighbors, decision trees, Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting]. We have tested the effects of changes in lifestyle in MS prediction at individual levels.All models showed adequate calibration and good discrimination, but the LGBM showed better performance (Sensitivity = 87.8 %, Specificity = 70.2 %, AUC-ROC = 0.86). Causal inference analysis showed that increasing physical activity level and reducing BMI by at least 2 % had an effect of reducing the predicted probability of MS by 3.8 % (95 % CI = -4.8 %; -2.7 %).ML models based on data from a checkup program showed good performance to predict MS and allowed testing for effects of lifestyle changes in this prediction. External validation is recommended to verify models' ability to identify at-risk individuals, and potentially increase their engagement in preventive measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
此去经年完成签到 ,获得积分0
1秒前
GAOBIN000完成签到,获得积分20
1秒前
Witness发布了新的文献求助10
2秒前
刘帅完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助30
3秒前
何raven发布了新的文献求助10
4秒前
科学徐完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
英俊的铭应助项人采纳,获得10
8秒前
朴素尔蝶完成签到,获得积分10
9秒前
pluto应助燕燕于飞采纳,获得10
10秒前
小二郎应助何raven采纳,获得10
12秒前
朴素尔蝶发布了新的文献求助10
13秒前
yliu完成签到,获得积分10
14秒前
15秒前
15秒前
生动的访琴完成签到,获得积分10
18秒前
Zephyr完成签到,获得积分10
20秒前
华仔应助平安喜乐采纳,获得10
20秒前
ljsash发布了新的文献求助10
21秒前
加薪完成签到,获得积分10
21秒前
22秒前
科研go应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
科研go应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
充电宝应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
充电宝应助科研通管家采纳,获得10
22秒前
22秒前
研友_LMBAXn完成签到,获得积分10
22秒前
22秒前
无极微光应助科研通管家采纳,获得20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5796494
求助须知:如何正确求助?哪些是违规求助? 5777499
关于积分的说明 15492065
捐赠科研通 4923524
什么是DOI,文献DOI怎么找? 2650371
邀请新用户注册赠送积分活动 1597634
关于科研通互助平台的介绍 1552272