Hybrid Deep Reinforcement Learning Considering Discrete-Continuous Action Spaces for Real-Time Energy Management in More Electric Aircraft

强化学习 计算机科学 计算 增强学习 整数(计算机科学) 动作(物理) 数学优化 能源管理 功率(物理) 电力系统 算法 能量(信号处理) 人工智能 数学 物理 统计 量子力学 程序设计语言
作者
Bing Liu,Bowen Xu,Tong He,Wei Yu,Fanghong Guo
出处
期刊:Energies [MDPI AG]
卷期号:15 (17): 6323-6323 被引量:4
标识
DOI:10.3390/en15176323
摘要

The increasing number and functional complexity of power electronics in more electric aircraft (MEA) power systems have led to a high degree of complexity in modelling and computation, making real-time energy management a formidable challenge, and the discrete-continuous action space of the MEA system under consideration also poses a challenge to existing DRL algorithms. Therefore, this paper proposes an optimisation strategy for real-time energy management based on hybrid deep reinforcement learning (HDRL). An energy management model of the MEA power system is constructed for the analysis of generators, buses, loads and energy storage system (ESS) characteristics, and the problem is described as a multi-objective optimisation problem with integer and continuous variables. The problem is solved by combining a duelling double deep Q network (D3QN) algorithm with a deep deterministic policy gradient (DDPG) algorithm, where the D3QN algorithm deals with the discrete action space and the DDPG algorithm with the continuous action space. These two algorithms are alternately trained and interact with each other to maximize the long-term payoff of MEA. Finally, the simulation results show that the effectiveness of the method is verified under different generator operating conditions. For different time lengths T, the method always obtains smaller objective function values compared to previous DRL algorithms, is several orders of magnitude faster than commercial solvers, and is always less than 0.2 s, despite a slight shortfall in solution accuracy. In addition, the method has been validated on a hardware-in-the-loop simulation platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助超炫酷的采纳,获得10
刚刚
shu应助王木兮采纳,获得10
刚刚
1秒前
1秒前
淡然的芷荷完成签到 ,获得积分10
1秒前
残剑月应助激动的严青采纳,获得10
1秒前
当归完成签到,获得积分10
2秒前
ASHES发布了新的文献求助30
3秒前
c182484455完成签到,获得积分10
3秒前
JHJ完成签到,获得积分10
4秒前
在水一方应助风风风风采纳,获得10
4秒前
甘棠发布了新的文献求助10
5秒前
5秒前
xiao双月完成签到,获得积分10
5秒前
zzz发布了新的文献求助10
6秒前
6秒前
酷波er应助ins采纳,获得10
6秒前
白云发布了新的文献求助10
7秒前
eyu完成签到,获得积分10
7秒前
李爱国应助fdpb采纳,获得10
9秒前
9秒前
jjyrush完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
yb发布了新的文献求助10
10秒前
LziT发布了新的文献求助10
10秒前
yx发布了新的文献求助10
10秒前
激动的严青完成签到,获得积分10
11秒前
13秒前
13秒前
13秒前
wanci应助LziT采纳,获得10
15秒前
李健应助尼古拉斯采纳,获得10
16秒前
16秒前
16秒前
16秒前
SciGPT应助孙伟健采纳,获得10
16秒前
谨慎时光完成签到,获得积分10
17秒前
zhang发布了新的文献求助10
17秒前
wsg发布了新的文献求助10
17秒前
852应助星星采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601126
求助须知:如何正确求助?哪些是违规求助? 4686631
关于积分的说明 14845345
捐赠科研通 4679752
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506081
关于科研通互助平台的介绍 1471266