Combining machine learning with radiomics features in predicting outcomes after mechanical thrombectomy in patients with acute ischemic stroke

接收机工作特性 医学 支持向量机 人工智能 无线电技术 特征选择 冲程(发动机) 机器学习 曲线下面积 逻辑回归 急性中风 放射科 内科学 计算机科学 组织纤溶酶原激活剂 工程类 药代动力学 机械工程
作者
Yan Li,Yongchang Liu,Zhen Hong,Ying Wang,Xiuling Lu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:225: 107093-107093 被引量:13
标识
DOI:10.1016/j.cmpb.2022.107093
摘要

Some patients with mechanical thrombectomy will have a poor prognosis. This study establishes a model for predicting the prognosis after mechanical thrombectomy in acute stroke based on diffusion-weighted imaging (DWI) omics characteristics.A total of 260 stroke patients receiving mechanical thrombectomy in our hospital were randomly divided into a training set (n = 182) and a test set (n = 78) in a 7:3 ratio. The regions of interest (ROI) of the imaging features of the DWI infarct area were extracted, and the minimum absolute contraction and selection operator regression model were used to screen the best radiomics features. A support vector machine classifier established the prediction model of the prognosis after mechanical thrombectomy of acute stroke based on the selected features. The prediction efficiency of the model was evaluated by the receiver operating characteristic (ROC) curve.A total of 1936 radiomic features were extracted, and six features highly correlated with prognosis were screened after dimensionality reduction. Based on the DWI model, the ROC analysis showed that the area under the curve (AUC) for correct prediction in the training and test sets was 0.945 and 0.920, respectively.The model based on the characteristics of radiomics and machine learning has high predictive efficiency for the prognosis of acute stroke after mechanical thrombectomy, which can be used to guide personalized clinical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
达不溜qp发布了新的文献求助10
8秒前
9秒前
可爱的函函应助forge采纳,获得10
10秒前
11秒前
李小强完成签到,获得积分10
11秒前
summer完成签到 ,获得积分10
12秒前
等待盼雁发布了新的文献求助10
13秒前
闪闪落雁完成签到,获得积分10
16秒前
17秒前
刘敏小七给刘敏小七的求助进行了留言
17秒前
老奈发布了新的文献求助10
18秒前
车到山前必有路女士完成签到,获得积分10
19秒前
forge发布了新的文献求助10
21秒前
21秒前
CipherSage应助科研通管家采纳,获得10
25秒前
慕青应助科研通管家采纳,获得10
25秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
慕青应助科研通管家采纳,获得10
25秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
思源应助科研通管家采纳,获得10
25秒前
Hello应助科研通管家采纳,获得30
25秒前
科研助手6应助科研通管家采纳,获得10
25秒前
科研助手6应助科研通管家采纳,获得10
25秒前
25秒前
FashionBoy应助小金骑士采纳,获得10
25秒前
隐形曼青应助科研通管家采纳,获得10
25秒前
26秒前
Done应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
26秒前
淘宝叮咚发布了新的文献求助30
28秒前
汉堡包应助forge采纳,获得10
29秒前
JamesPei应助老奈采纳,获得10
29秒前
35秒前
科研通AI2S应助Wan采纳,获得30
36秒前
DRAZ发布了新的文献求助10
40秒前
tsing完成签到,获得积分20
41秒前
jjjhhh完成签到,获得积分20
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323664
关于积分的说明 10215332
捐赠科研通 3038846
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339