A Federated Learning Scheme Based on Lightweight Differential Privacy

差别隐私 计算机科学 信息隐私 隐私软件 推论 深度学习 数据建模 机器学习 人工智能 计算机安全 数据挖掘 数据库
作者
Wenlong Song,Hong Chen,Zhijie Qiu,Lei Luo
标识
DOI:10.1109/bigdata59044.2023.10386546
摘要

With the rapid growth of data and the increasing awareness of privacy protection, data privacy issues have become particularly important in the field of machine learning. Federated learning, as a distributed learning method, achieves collaborative training of models while preserving data privacy by keeping the data stationary and allowing the model to move. However, during the federated learning process, there is still a risk of privacy leakage when aggregating the intermediate parameters of models trained by different data providers. Researchers have found that adding noise to the intermediate parameters of the model using differential privacy can effectively prevent privacy inference on the data contributors. Nevertheless, there exists an inherent trade-off between the accuracy and privacy in federated learning models under differential privacy. Strengthening privacy protection often leads to a decrease in model performance. This trade-off becomes more pronounced in complex deep learning models that require multiple iterations to converge. To address the issues of data privacy, data silos, and the trade-off between data privacy leakage and model availability in deep learning within federated learning, this paper proposes a relaxed differential privacy federated learning approach. It reduces the impact of noise on the final results by selectively perturbing gradients when data providers return intermediate model parameters. Experiments demonstrate that this approach achieves a high level of accuracy while preserving data privacy. Additionally, it exhibits superior performance in terms of computational efficiency, striking a well-balanced compromise between accuracy and privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxy发布了新的文献求助10
刚刚
李健应助陈cc采纳,获得10
刚刚
刚刚
Akim应助杨雨婷采纳,获得10
3秒前
大气的煎饼完成签到 ,获得积分10
3秒前
3秒前
3秒前
Lucas应助小小采纳,获得10
4秒前
oops发布了新的文献求助10
5秒前
6秒前
lxz完成签到,获得积分10
6秒前
6秒前
听宇完成签到,获得积分20
7秒前
灵巧谷芹完成签到,获得积分20
7秒前
听闻完成签到 ,获得积分10
7秒前
redstone发布了新的文献求助10
10秒前
10秒前
可爱的函函应助wxy采纳,获得10
10秒前
Jessica发布了新的文献求助10
10秒前
殷启维发布了新的文献求助10
10秒前
xxfsx应助lxz采纳,获得10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
漂亮夏兰发布了新的文献求助200
13秒前
机智向松发布了新的文献求助10
14秒前
史莱莱莱姆完成签到,获得积分10
14秒前
浮游应助林林采纳,获得10
15秒前
15秒前
科研通AI6应助QiuShuiCi采纳,获得10
16秒前
bkagyin应助guohuameike采纳,获得10
16秒前
小陆完成签到 ,获得积分10
17秒前
17秒前
花开富贵发布了新的文献求助20
18秒前
心xin发布了新的文献求助10
19秒前
干焱完成签到,获得积分10
19秒前
21秒前
redstone完成签到,获得积分10
21秒前
21秒前
鳗鱼凡波发布了新的文献求助10
22秒前
浮游应助述说采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431130
求助须知:如何正确求助?哪些是违规求助? 4544274
关于积分的说明 14191498
捐赠科研通 4462799
什么是DOI,文献DOI怎么找? 2446662
邀请新用户注册赠送积分活动 1438033
关于科研通互助平台的介绍 1414664